Orthopedics

Accelerate your innovations by reducing time, cost and risk with orthopedic simulations

Our products and services help you develop cutting edge designs for orthopedics implants and joint replacements, within reduced time frames and costs. We provide objective, data backed solutions to help you address a wide array of development challenges such as determining load-bearing requirements and fulfilling regulatory obligations.

Applications

“I am responsible for the design and development of joint replacements prostheses and have worked with AnyBody Technology for the past 15 years to evaluate skeletal joint reaction forces and motions. Our collaborations have evaluated both static and dynamic conditions including simulation a physical training exercise with motion capture to account for acceleration of body mass. Other simulations have determined the magnitude and direction of the joint reaction force resulting from external forces applied to a limb and from maximum isometric contraction of joint function muscles. Evaluations of skeletal joint mechanics conducted by AnyBody have proven to be important and necessary part of the joint replacement design and development process”

Jerome Klawitter, PhD. Senior Engineer, Smith and Nephew, Austin, Texas

“At Scripps Health, CA, we have successfully used the AnyBody Modeling System to investigate and gain valuable insights into the biomechanics of the shoulder joint for optimizing surgical procedures. The innovative software allows us to explore scenarios, test solutions and make qualified estimations of properties inside the body, which are otherwise mostly impossible or unethical to measure. The AnyBody Modeling System has proven to be a critical part of our research process when testing and developing new products and surgical approaches across the spectrum of body sizes and body shapes. We also greatly appreciate the research, technical, and customer support from the dedicated people at AnyBody Technology, for providing advice and support for issues during challenging simulations.”

Darryl DLima, Scripps Health, CA

Recent research

  • Zhang Q, Chen Z, Peng Y, Jin Z, Qin L, (2023), “The novel magnesium–titanium hybrid cannulated screws for the treatment of vertical femoral neck fractures: Biomechanical evaluation”. Journal of Orthopaedic Translation, vol. 42, pp. 127-136. [ DOIWWW]
  • Esrafilian A, Halonen KS, Dzialo CM, Mannisi M, Mononen ME, Tanska P, Woodburn J, Korhonen RK, Andersen MS, (2023), “Effects of gait modifications on tissue-level knee mechanics in individuals with medial tibiofemoral osteoarthritis: A proof-of-concept study towards personalized interventions”. J. Orthop. Res., [ DOIWWW ]
  • Menze J, Leuthard L, Wirth B, Audigé L, De Pieri E, Gerber K, Ferguson SJ, (2023), “The effect of pathological shoulder rhythm on muscle and joint forces after reverse shoulder arthroplasty, a numerical analysis”. Clin. Biomech. , [ DOIWWW ]
  • Rothammer B, Wolf A, Winkler A, Schulte-Hubbert F, Bartz M, Wartzack S, Miehling J, Marian M, (2023), “Subject-specific tribo-contact conditions in total knee replacements: a simulation framework across scales”. Biomech. Model. Mechanobiol., [ DOIWWW ]
  • Zhang Q, Peng Y, Chen Z, Jin Z, Qin L, (2023), “Conformity design can change the effect of tibial component malrotation on knee biomechanics after total knee arthroplasty”. Clin. Biomech. , [ DOIWWW ]
  • Tzanetis P, Fluit R, de Souza K, Robertson S, Koopman B, Verdonschot N, (2023), “Pre-Planning the Surgical Target for Optimal Implant Positioning in Robotic-Assisted Total Knee Arthroplasty”. Bioengineering, vol. 10, pp. 543. [ DOIWWW ]
  • Bayoglu R, Witt JP, Chatain GP, Okonkwo DO, Ignasiak D, (2023), “Clinical Validation of a Novel Musculoskeletal Modeling Framework to Predict Postoperative Sagittal Alignment”. Spine , vol. Publish Ahead of Print, [ DOIWWW ]
  • Ignasiak D, Behm P, Mannion AF, Galbusera F, Kleinstück F, Fekete TF, Haschtmann D, Jeszenszky D, Zimmermann L, Richner-Wunderlin S, Vila-Casademunt A, Pellisé F, Obeid I, Pizones J, Sánchez Pérez-Grueso FJ, Karaman MI, Alanay A, Yilgor Ç, Ferguson SJ, Loibl M, ESSG European Spine Study Group, (2022), “Association between sagittal alignment and loads at the adjacent segment in the fused spine: a combined clinical and musculoskeletal modeling study of 205 patients with adult spinal deformity”. Eur. Spine J., [ DOIWWW ]
  • De Pieri E, Cip J, Brunner R, Weidensteiner C, Alexander N, (2022), “The functional role of hip muscles during gait in patients with increased femoral anteversion”. Gait Posture, [ DOIWWW ]
  • Flores C, Celik H, Hoenecke H, D’Lima DD, (2022), “Subject-Specific Computational Modeling of Acromioclavicular and Coracoclavicular Ligaments”. J. Shoulder Elbow Surg., [ DOIWWW ]
  • De Pieri E, Friesenbichler B, List R, Monn S, Casartelli NC, Leunig M, Ferguson SJ (2021), “Subject-Specific Modeling of Femoral Torsion Influences the Prediction of Hip Loading During Gait in Asymptomatic Adults“, Front Bioeng Biotechnol, vol. 9, pp. 679360. [DOI]
  • Andersen MS, Dzialo CM, Marra MA, Pedersen D (2021), “A Methodology to Evaluate the Effects of Kinematic Measurement Uncertainties On Knee Ligament Properties Estimated From Laxity Measurements“, J. Biomech. Eng.. [DOI]
  • Rasmussen J, Iversen K, Engelund BK, Rasmussen S (2021), “Biomechanical Evaluation of the Effect of Minimally Invasive Spine Surgery Compared with Traditional Approaches in Lifting Tasks“, Frontiers in Bioengineering and Biotechnology. [PDFDOI]
  • Tzanetis P, Marra MA, Fluit R, Koopman B, Verdonschot N (2021), “Biomechanical Consequences of Tibial Insert Thickness after Total Knee Arthroplasty: A Musculoskeletal Simulation Study“, Applied sciences. [DOIWWW]

Click here for more articles on orthopedics

Top