Improving user-device alignment

Optimal human-exoskeleton alignment is crucial to achieve the beneficial effect of the assistive device. Augment laboratory and field studies with biomechanical analyses, and address human-exoskeleton interactions by using a human-centered design optimization through biomechanics simulation to efficiently analyze and evaluate exoskeleton functions.

 

Examples:

  • Augment laboratory and field studies with biomechanical analyses.
  • Use simulation studies as in-silico evidence of the efficacy and safety of your device.
  • Supplement functional and safety portfolio of your device with simulations studies.
  • Test your assistive device’s fit and support through population-based simulations.
  • Investigate how different mechanical design parameters can affect the user.
  • Investigate side-effects as redistribution of loads onto other body parts.

 

"The AnyBody Modeling System can simulate trunk muscles that cannot otherwise be measured by normal myoelectricity. In addition, it can calculate joint forces that cannot be captured easily, which makes the software essential for correct estimation of the effect of our exoskeleton. The results and visualizations are additionally used in our promotional videos and has received great feedback from our customers.”

Daigo Orihara, CEO Innophys Co., Ltd.

        • Fritzsche L, Galibarov P, Gärtner C, Bornmann J, Damsgaard M, Wall R, Schirrmeister B, Gonzalez-Vargas J, Pucci D, Maurice P (2021), “Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modelling System“, HAL.
        • Zhang L, Liu Y, Wang R, Smith C, Gutierrez-Farewik EM (2021), “Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction“, Front. Neurorobot., vol. 15, pp. 13. [DOIWWW]
        • Zhou L, Li Y, Bai S (2017), “A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation“, Rob. Auton. Syst., vol. 91, pp. 337-347. [DOIWWW]