

The webcast will begin shortly...

Increased femoral anteversion in children – can musculoskeletal modeling better inform clinical decision-making?

September 14th, 2023

Outline

- Introduction to the AnyBody Modeling System
- Presentation by Dr. Nathalie
 Alexander and Dr. Enrico De Pieri
- Upcoming events
- Question and answer session

Presenter:

Dr. Nathalie Alexander Head of the Laboratory of Motion Analysis

The Children's Hospital of Eastern Switzerland in St. Gallen.

Presenter: Dr. Enrico De Pieri

Senior Research Engineer at Zimmer Biomet

Former Research Associate at the University Children's Hospital Basel.

Host: Kristoffer Iversen Technical Sales Executive

AnyBody Technology

Control Panel

The Control Panel appears on the right side of your screen.

Submit questions and comments via the Questions panel.

Questions will be addressed at the end of the presentation. If your question is not addressed, we will do so by email.

Musculoskeletal Simulation

Motion Data Kinematics and Forces

Body Loads

- Joint moments
- Muscle forces
- Joint reaction forces

Product optimization design

ANYBODY Modeling System

Orthopedics and rehab

Sports

14/09/2023

Assistive

Devices

AnyBody Modeling System

Increased femoral anteversion in children – can musculoskeletal modeling better inform clinical decisionmaking?

Presented by Dr. Nathalie Alexander and Dr. Enrico De Pieri

Increased femoral anteversion in children

Can musculoskeletal modelling better inform clinical decision-making?

Nathalie Alexander, Enrico De Pieri

- Introduction
- Study #1: Altered joint loading
- Study #2: Altered muscle functionality

 \rightarrow muscle moment contributions to net joint moment

- Study #3: Surgical intervention
- Conclusion and outlook

Femoral anteversion = twist between the proximal & distal parts of the femur (Kaiser et al., 2016)

Femoral torsion decreases with age (Crane, 1959; Fabry et al., 1973)

2

4

 \cap

6

8

Age (yrs)

12

16

Introduction

"Kneeing-in"

"Toeing-in"

Crane L. Femoral torsion and ist relation to toeing-in and toing-out JBJS 1959

Clinical examination

External rotation **J**

Internal rotation **†**

Trochanteric Prominence Angle Test

Davids J. et al, 2002, Journal of Pediatric Orthopedics Dreher T. et al., 2019, Orthopäde

Femoral torsion is commonly assessed using computer tomography (CT) or magnetic resonance imaging (MRI) ¹⁻³

[1] Radler et al., 2010, Gait Posture, 32(3):405-410
 [2] Cordier and Katthagen, 2000, Orthopade 29(9), 795-801
 [3] Hefti, 2000, Orthopade 29(9), 814-820

Introduction

Increased femoral anteversion is associated with:

- Decreased function^{1,2}
- Pain²⁻⁶
- Altered gait patterns^{2, 7-10}

[1] Leblebici et al., 2019, Gait & Posture, 70:336-340
[2] Mackay et al., 2021, Gait & Posture, 86:144-149
[3] Powers, 2003, J Orthop Sports Phys Ther, 33(11):639-646
[4] Eckhoff et al., 1997, CORR, 339: 152-155
[5] Erkocak et al., 2016, Knee Surgery, Sports Traumatology, Arthroscopy, 24:3011-20

[6] Stambough et al., 2018, Journal of Pediatric Orthopaedics. 38:503-9
[7] Bruderer-Hofstetter et al., 2015, J. Orthop. Res. 33 (2):155–162
[8] Passmore et al., 2018, Gait Posture 63:228–235
[9] Alexander et al., 2019, J. Biomechanics 86:167–174
[10] Alexander et al., 2022, Front. Bioeng. Biotechnol.

Asymptomatic patients with increased femoral anteversion

- Lower-extremity function form score ↑
- Falling frequency ↑

	IFA $(n = 65)$	Control $(n = 32)$			
Standing	2.80	0.00		i	
Walking	14.28	7.14	'K	—X	
Walking faster	21.42	7.14		-//	-
Running	60.00	14.28			
Climbing stairs	12.85	10.71	$2\mathbf{v}$	21	
Walking on uneven ground	21.42	35.71	ZX	SX	48

Falling frequency during activities (%).

Abbreviation: IFA, increased femoral anteversion.

Gait deviations

Excessive Femoral Anteversion

Position of the femoral head with the foot straight.

Most patients with excessive femoral anteversion "in-toe" to better position the femoral head.

Gait deviations

- Anterior pelvic tilt
- hip flexion
- hip internal rotation
- foot progression angle 'in-toeing'¹⁻⁵
- hknee flexion (terminal stance) ²⁻⁵

Bruderer-Hofstetter et al., 2015, J. Orthop. Res. 33 (2):155–162
 Passmore et al., 2018, Gait Posture 63:228–235
 Alexander et al., 2019, J. Biomechanics 86:167–174
 Mackay et al., 2021, Gait Posture 86:144–149
 Alexander et al., 2022, Front. Bioeng. Biotechnol.

Increased femoral anteversion is associated with:

- patellofemoral / anterior knee pain²⁻⁵
- hip pain and labral damage⁶
- patellofemoral instability⁷

Introduction

severity of hip osteoarthritis⁸

[1] Mackay et al., 2021, Gait & Posture, 86:144-149
[2] Powers, 2003, J Orthop Sports Phys Ther, 33(11):639-646
[3] Eckhoff et al., 1997, CORR, 339: 152-155
[4] Erkocak et al., 2016, Knee Surgery, Sports Traumatology, Arthroscopy, 24:3011-20

[5] Stambough et al., 2018, Journal of Pediatric Orthopaedics. 38:503-9
[6] Tönnis & Heinecke, 1999, J Bone Joint Surg Am 81(12), 1747-1770
[7] Dejour & Le Coultre, 2007, Sports Med Arthrosc Rev 15(1), 39-46
[8] Parker et al., 2021, Arthroscopy, Sports Medicine, and Rehabilitation 3(6), e2047-e2058

58% Knee Pain

32% Ankle/Foot Pain

Frontiers | Frontiers in Bioengineering and Biotechnology

ORIGINAL RESEARCH published: 06 June 2022 doi: 10.3389/fbioe.2022.914990

Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients

Nathalie Alexander $^{1,2},$ Reinald Brunner $^{3,4,5},$ Johannes Cip 6, Elke Viehweger 3,4,5 and Enrico De Pieri $^{3,5_{\ast}}$

¹Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland, ²Department of Orthopaedics and Traumatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland, ⁴Daboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland, ⁴Department of Paediatric Orthopaedics, University of Basel Children's Hospital, Basel, Switzerland, ⁴Dpartment of Biomedical Engineering, University of Basel, Basel, Basel, Switzerland, ⁴Dpartment of Paediatric Orthopaedics, Switzerland, ⁴Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland

Increased femoral anteversion is associated with:

- patellofemoral / anterior knee pain²⁻⁵
- hip pain and labral damage⁶
 Altered joint loading?
 patellofemoral instability'
- severity of hip osteoarthritis⁸

[1] Mackay et al., 2021, Gait & Posture, 86:144-149
[2] Powers, 2003, J Orthop Sports Phys Ther, 33(11):639-646
[3] Eckhoff et al., 1997, CORR, 339: 152-155
[4] Erkocak et al., 2016, Knee Surgery, Sports Traumatology, Arthroscopy, 24:3011-20

[5] Stambough et al., 2018, Journal of Pediatric Orthopaedics. 38:503-9
[6] Tönnis & Heinecke, 1999, J Bone Joint Surg Am 81(12), 1747-1770
[7] Dejour & Le Coultre, 2007, Sports Med Arthrosc Rev 15(1), 39-46
[8] Parker et al., 2021, Arthroscopy, Sports Medicine, and Rehabilitation 3(6), e2047-e2058

Musculoskeletal modelling

• Estimate joint loading

Biomechanical considerations

Modenese et al., 2021, Gait & Posture, 88:318-21

Joint loading:

• \uparrow femoral torsion $\rightarrow \uparrow$ anterior & medial hip contact forces¹

personalized torsion model: ²
 ↑ mediolateral patellofemoral joint contact forces
 ↑ hip contact forces

Joint loads $\leftarrow \rightarrow$ kinematic gait patterns?

First aim:

Analysis of joint contact forces in patients with increased femoral anteversion compared to controls

Second aim:

Effect of kinematic gait patterns:

- Hip rotation
- Foot progression
- Knee flexion

torsion verfied by CT scans; no neurological disorder; no foot deformity

Controls (n = 9)18.7° (4.1°) **5** ♀ **/ 4** ♂ 12.0 (3.0) yrs 1.53 (0.18) m 41.8 (12.3) kg

torsion verfied by CT scans; no neurological disorder; no foot deformity

- 3D gait analysis
 - Kinematic data (marker trajectories) markers placed according to PiG
 - Kinetic data (ground reaction forces)

• AnyBody Modeling System (v. 7.3)

AnyBody Webcast 2021

Subject-specific modelling

Parameters

Morphological

- Femoral anteversion
- Midpoint of hip rotation (Midpoint _{HipRot ROM})

<u>Gait</u>

- 3D hip contact forces
- 3D knee contact forces

Kinematic gait patterns - mean in terminal stance

Foot progression angle

Hip rotation

Knee flexion

KneeFlex_{tSt}

FootProg_{tSt}

HipRot_{tSt}

Waveforms

- 3D hip contact forces
- 3D knee contact forces

Regression anaysis

- Morphological parameters
- Gait patterns

Regression analysis of **morphological parameters**

		Fe	mora	l tors	ion		Midpoint _{HipRot ROM}						
Hip 3D kinematics	0	20	40	60	80	100	0	20	40	60	80	100	
hip flexion							0	20	40	60	80	100	
hip abduction							0	20	40	60	80	100	
hip internal rotation							0	20	40	+ 60	80	100	
Knee flexion	0	20	4 0	60	80	100	0	20	40	60	80	100	
Foot progression	0	20	40 Gait cy	60 rcle [%]	80	100	0	20	40 Gait cy	60 ycle [%]	80	100	

• No correlations with hip and knee joint forces

Results

	Hip Rotation tSt							Knee Flexion _{tSt}						Foot Progression tSt					
Hip 3D contact forces	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100	
› hip proximo-distal force							0	20	40	+ 60	80	100							
 hip medio-lateral force 							0	20	40	+ 60	80	100							
 hip antero-posterior force 							0	20	40	60	80	100							

Results

Joint forces

Subgroup analysis based on KneeFlex_{tSt}

Controls Patients – increased KneeFlex_{tSt} (n=10) Patients – normal KneeFlex_{tSt} (n = 32)

• increased KneeFlex_{tSt} vs. normal KneeFlex_{tSt}

- ↑ femoral anteversion: +7.3°
- ↑ posterior knee joint force
- \uparrow quadriceps force on the patella
- limited differences between patients and controls
- relevant in terms of anterior knee pain?

In contrast to modelling torsion irrespective of gait alterations ^{1,2}:

patients show lower knee and hip joint forces

[1] Kainz et al., 2020, PLoS One. 15:e0235966.[2] Modenese et al., 2021, Gait & Posture, 88:318-21

Morphological parameters

 No correlation between femoral torsion and hip rotation ¹⁻³

 Midpoint _{HipRot ROM} = better indicator for transversal gait deviations than femoral anteversion ⁴

[1] Radler et al., 2010, Gait Posture, 32(3):405-410[2] Schranz et al., 2021, Clin Biomech, 84:105333

[3] Mackay et al., 2021, Gait Posture 86:144–149[4] Kerr et al., 2003, Gait Posture, 17(1):88-91.

Discussion

Effect of gait patterns

HipRot_{tSt} and FootProg_{tSt}

did not affect joint loading

- \uparrow KneeFlex_{tSt} gait pattern leads to:
- → more medial and proximal HCFs
- \rightarrow more lateral and posterior KCFs
- \rightarrow \uparrow quadriceps force on the patella

Increasing knee flexion \rightarrow

increasing patellofemoral compression forces ^{1,2}

 increased quadriceps force contributes to larger tibiofemoral and patellofemoral joint loadings ³

[1] Modenese et al., 2013, J Biomech, 46(6):1193-1200
[2] Alexander et al., 2016, Gait Posture, 45:137-142
[3] Steele et al., 2012, Gait Posture 35(4), 556-560

Patients: \downarrow knee & hip joint loading

Clinical hip rotation better indicator for transversal gait patterns

Gait pattern knee flexion:

• ↑ joint loads

- Subgroup: limited differences patients vs. controls
 → limited clinical relevance?
- Related to anterior knee pain ?

Frontiers | Frontiers in Bioengineering and Biotechnology

ORIGINAL RESEARCH published: 06 June 2022 doi: 10.3389/fbioe.2022.914990

Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients

Nathalie Alexander^{1,2}, Reinald Brunner^{3,4,5}, Johannes Cip⁶, Elke Viehweger^{3,4,5} and Enrico De Pieri^{3,5,*}

¹I aboratory for Motion Analysis, Department of Paediatric Orthopaedcs; Otikiten's Hospital of Eastern Switzerland, St. Galen, Switzerland, ¹Dapartment of Orthopaedics and Traumatology; Cantonal Hospital St. Galen, St. Galen, St. Galen, St. Galen, St. Galen, St. Galen, St. Basel, Children's Hospital, Basel, Switzerland, ¹Dapartment of Paediatric Orthopaedics, University of Basel Children's Hospital, Basel, Switzerland, ¹Dapartment of Biomedical Engineering, University of Basel, Basel, Switzerland, ¹Dapartment of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, ¹St. Galen, Switzerland

Gait & Posture 100 (2023) 179–187

Contents lists available at ScienceDirect

Gait & Posture

journal homepage: www.elsevier.com/locate/gaitpost

The functional role of hip muscles during gait in patients with increased femoral anteversion

Enrico De Pieri^{a,b}, Johannes Cip^c, Reinald Brunner^{a,b,d}, Claudia Weidensteiner^{b,e}, Nathalie Alexander^{f,g,*}

^a Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland

^b Department of Biomedical Engineering, University of Basel, Basel, Switzerland

^e Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland

^d Department of Paediatric Orthopaedics, University of Basel Children's Hospital, Basel, Switzerland

e Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland

^f Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland

⁸ Department of Orthopaedics and Traumatology, Cantonal Hospital St. Gallen, Switzerland

Financial support:

Research Fund for Excellent Junior Researchers special program Clinical Research

Biomechanical considerations

Paley, 2002, Dynamic Deformities and Lever Arm Considerations. In: Principles of Deformity Correction.

Biomechanical considerations

Increased anteversion

Increased anteversion with in-toeing

De Pieri et al., 2021, Front. Bioeng. Biotechnol. 9:551

Biomechanical considerations

- Hip abductors' lever arms decrease for higher femoral anteversion
- Abductive capacity restored with 20° hip internal rotation

Gluteus Medius Posterior (6)
 Gluteus Minimus (3)
 Tensor Fasciae Latae (2)

Gluteus Medius Anterior (6)

Patients vs. in-toeing controls

Patients do not present a net hip abductive deficit during gait

Demands placed on individual muscles?

Analyse muscle contributions to hip joint moments and muscle forces in patients compared to:

- controls
- hypothetical patients

(controls' gait pattern + increased anteversion)

https://clinicalgate.com/hip-5.

Muscle moment contributions to net joint moment

Net joint moments

Derrick et al., 2020, J. Biomech. 99:109533

Net joint moments

For an unconstrained DOF net joint moment = sum of moments generated by the muscles

RightLegSelectedOutput.any LeftLegSelectedOutput.any LegMoments.any FullBody.main.any AnyForceMomentMeasure2 AnklePlantarFlexionNetMomentMuscle = { AnyRefFrame &ref = ...Seg.Shank.AnkleJoint; IncludeSegments = {&...Seg.Foot, &...Seg.Talus}; IncludeForces = arrcat(ObjSearch("...Mus.*", "AnyMuscle"), ObjSearch("..TrunkMuscles.PsoasMajor.*", "AnyMuscle"), ObjSearchRecursive("...JointMuscles", "*", "AnyMuscle")); AnyVec3 Mlocal=M*ref.Axes; AnyVar MPlantarFlexion=-Mlocal[2]; };

Muscle moments


```
AnyForceMomentMeasure2
Soleus_AnkleMoment = {
    AnyRefFrame &ref = ..Seg.Shank.AnkleJoint;
    IncludeSegments = {&..Seg.Foot, &..Seg.Talus};
    IncludeForces = arrcat(
        ObjSearch("..Mus.Soleus*", "AnyMuscle")
    );
    AnyVec3 Mlocal=M*ref.Axes;
    AnyVar MPlantarFlexion=-Mlocal[2];
};
```

Muscle moments


```
AnyForceMomentMeasure2 Gastrocnemius_AnkleMoment = {
    AnyRefFrame &ref = ..Seg.Shank.AnkleJoint;
    IncludeSegments = {&..Seg.Foot, &..Seg.Talus};
    IncludeForces = arrcat(ObjSearch("..Mus. Gastrocnemius *", "AnyMuscle"));
    AnyVec3 Mlocal=M*ref.Axes;
    AnyVar MPlantarFlexion=-Mlocal[2];};
```

```
AnyForceMomentMeasure2 Gastrocnemius_KneeMoment = {
    AnyRefFrame &ref = ..Seg.Thigh.KneeJoint.RotNode;
    IncludeSegments = {&..Seg.Shank, &..Seg.Foot, &..Seg.Talus};
    IncludeForces = arrcat(ObjSearch("..Mus. Gastrocnemius *", "AnyMuscle"));
    AnyVec3 Mlocal=M*ref.Axes;
    AnyVar MKneeFlexion=-Mlocal[2];};
```

Muscle moments

AnyForceMomentMeasure2 GluteusMedius_HipMoment = {
 AnyRefFrame &ref = .. Seg.Pelvis.HipJoint.RotNode;
 IncludeSegments = {&..Seg.Thigh, &..Seg.Shank, &..Seg.Patella,
 &..Seg.Foot, &..Seg.Talus};
 IncludeForces = arrcat(ObjSearch("..Mus. GluteusMedius *", "AnyMuscle"));
 AnyVec3 Mlocal=M*ref.Axes;

AnyVar MHipAbduction=Mlocal[0]; AnyVar MHipFlexion=Mlocal[2]; AnyVar MHipExternalRotation=Mlocal[1];

frontiers Frontiers in Bioengineering and Biotechnology

ORIGINAL RESEARCH published: 11 April 2022 doi: 10.3389/fbioe.2022.810560

Altered Muscle Contributions are Required to Support the Stance Limb During Voluntary Toe-Walking

Enrico De Pieri^{1,2,*}, Jacqueline Romkes^{1,2}, Christian Wyss^{1,2}, Reinald Brunner^{1,2,3†} and Elke Viehweger^{1,2,3†}

¹Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland, ²Department of Biomedical Engineering, University of Basel, Basel, Switzerland, ³Department of Paediatric Orthopaedics, University of Basel Children's Hospital, Basel, Switzerland

Analyse muscle contributions to hip joint moments and muscle forces in patients compared to:

- controls
- hypothetical patients

(controls' gait pattern + increased anteversion)

https://clinicalgate.com/hip-5.

Methods

Patients (n = 42)

Femoral anteversion

39.6° (6.9°)

Controls (n = 9)

Femoral anteversion

18.7° (4.1°)

Femoral anteversion 40°

Methods

Results

Results

Patients vs controls

muscle contributions to hip net frontal moment

Patients Controls

Patients vs controls

muscle contributions to hip net transversal moment

Gluteus minimus contribution

0.0

0

20

40

Gait cycle [%]

60

80

100

UKBB OSTSCHWEIZER

Patients vs controls

Gait cycle [%]

2.0

2.0

1.5

1.0

0.5

0.0

0

20

40

Gait cycle [%]

60

80

100

Rectus femoris force

- Altered muscles' contributions, but net abduction moment comparable (no net functional deficit)
- Altered transversal plane net moment and muscle contributions
- Patients required lower muscle forces
 - Comparable fatigue onset time with healthy peers (Leblebici et al., 2021)
 - Reduced joint loads

Patients vs hypothetical patients

muscle contributions to hip net frontal moment

Deep external rotators force

20

40

Patients

- · Hypothetical patients

Gait cycle [%]

60

80

100

Patients vs hypothetical patients

muscle forces

Muscle contributions to hip net transversal moment

Patients vs hypothetical patients muscle contributions to hip net tranversal moment

PatientsHypothetical patients

Discussion – straight vs in-toeing UKBB OSTSCHWEIZER

- Comparable hip abductors' moment contributions
- Muscle activation < 30% of the maximum strength

- Capable of walking straight?
- Targeted muscle strengthening beneficial?
- Functional deficits more visible in other activities
 - e.g. running (Byrnes et al., 2021)

Discussion – straight vs in-toeing UKBB OSTSCHWEIZER

- Higher required muscle forces
 - Confirm abductive lever arm dysfunction
 - Higher joint loads (Kainz et al. 2020, Modenese et al., 2021)
- Simultaneous co-contraction of hip internal and external rotators in transversal plane
 - Pathomechanism not described in literature so far
 - Potential joint stiffness \rightarrow discomfort
 - Higher metabolic cost of walking

Take Home

Gait & Posture 100 (2023) 179-187

Increased anteversion with in-toeing:

- ~ net abduction moment
- ↓ net external rotation moment
- ↓ muscle forces

The functional role of hip muscles during gait in patients with increased femoral anteversion

Enrico De Pieri $^{a,b},$ Johannes Cip c, Reinald Brunner $^{a,b,d},$ Claudia Weidensteiner $^{b,c},$ Nathalie Alexander f,g,*

* Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland Department of Biomedical Engineering, University of Basel, Basel, Sovieterland ⁵ Department of Poediatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland ⁶ Portainent of Poediatory Corthopaedics, University of Basel Children's Hospital, Basel, Switzerland ⁷ Division of Rodiological Physics, Department of Rodiology, University Hospital Basel, Basel, Switzerland ⁸ Laboratory for Motion Analysis, Department of Rodiology, University Hospital Basel, Basel, Switzerland ⁸ Laboratory for Motion Analysis, Department of Rodiology, University Hospital Basel, Basel, Switzerland ⁸ Department of Pondiatric Orthopaedics, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland

Increased anteversion without in-toeing:

- ~ muscle contributions to abduction moment
- \uparrow muscle forces \rightarrow lever-arm dysfunction
- transversal plane co-contraction

Effect of **femoral derotational osteotomy** in patients with idiopathic increased femoral anteversion on joint loading and muscular demands

- Increased femoral anteversion can be correct by a femoral derotional osteotomy (FDRO)
- FDRO is suggested as the only possible treatment
- depends on the severity of the patient's symptoms

Hefti, 2000, Orthopade 29(9): 814-20. Fabry, 2010, Eur J Pediatr 169(5): 529-34. Sass & Hassan, 2003, Am Fam Physician 68(3): 461-8.

Stambough et al., 2018, J Pediatr Orthop, 38:503-509
 Hamid et al., 2022, J Pediatr Orthop,
 MacWilliams et al., 2016, Gait Posture, 49: 202-206

Effect on joint and muscle forces ?

Improvements in gait patterns^{2,3}

• E.g. hip rotation and foot progression angle

FIGURE 4. Ladder graph depicting the association between individual preoperative and 1-year postoperative International Knee Documentation Committee (IKDC)-9 scores. All but 2 subjects demonstrated improved function and pain at 1-year, while 1 patient had no change in his IKDC.

Introduction

Methods

Methods

Statistics

- Kinematics
- Joint moments

- Joint forces
- Muscle forces

Pataky, 2012, Comput Methods Biomech Biomed Engin, 15(3):295-301.

___ pre

..... TDC

Gluteus minimus contribution to transversal hip moment

- Different directionality between patients and controls
- Improved after FDRO

pre

post

TDC

_

Muscle function:

post

- improved after FDRO
- except deep external rotators \rightarrow lingering compensation mechanism?

Gait Cycle (%)

.

improved knee extension

↓ quadriceps force on patella

↓ rectus femoris muscle force

- ↑ knee flexion is associated with ↑ tibio- and patellofemoral joint forces^{1,2}
- reason for the reported improvements in knee pain³ after FDRO?

[1] Alexander & Schwameder, 2016, Gait Posture, 45: 137-142.
 [2] Steele et al., 2021, Gait Posture, 35(4): 556-60.
 [3] Stambough et al., 2018, J Pediatr Orthop, 38:503-9.

Improved kinematics

Joint forces unaltered and still comparable to controls

Improved **muscle forces** (except deep external rotators)

If indicated, FDRO seems like a good option for reducing gait pathologies

- Increased femoral anteversion associated with:
 - Pain
 - Risk of joint overloading and secondary orthopaedic complications
 - Altered kinematics
 - Functional issues

- Patients present generally lower joint loads during gait
 - Long-term risk of joint overloading?
 - But higher loads for KneeFlex_{tSt} gait pattern

- Interplay between morphology and kinematics
 - Patient-specific assessment required

- Confimed abductors' lever-arm dysfunction
 - «straight» walking less efficient, not impossible
- Muscles are 3-dimensional actuators
 - Transversal plane kinetics should be considered

Interplay between morphology and kinematics

- Analysis of muscle function during motion(s) might lead
 - to better conservative treatments
 - Targeted muscle strengthening / gait retraining might be effective in patients with mild symptoms

• For severe symptoms, surgical intervention (FDRO) is an effective option for restoring normal gait kinematics

and muscle functionality

- MSK modelling not yet a diagnostic tool for individual cases
- Final decision depends on overall clinical picture

- Retrospective MSK modelling studies provide a more comprehensive understanding of the pathology
- More evidence is needed for clinical translation

Thank you!

If you have questions, please do not hesitate to contact us!

nathalie.alexander@kispisg.ch

www.anybodytech.com

• Events, Webcast library, Publication list,

www.anyscript.org

• Wiki, Blog, Repositories, Forum

Events

- ISTA September 27th 30th, 2023
- Webcast 12 October 2023
 - Toward personalized total knee arthroplasty: Pre-planning the patient's optimal joint function in robotic-assisted surgery
 - Periklis Tzanetis, PhD candidate, University of Twente

Meet us? Send email to <u>sales@anybodytech.com</u>

Want to present? Send email to ki@anybodytech.com

Thank you for your attention - Time for questions

