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Disease

Cause

Symptom

Osteoarthritis
(Degeneration)

Aging of joints
Obesity

Excessive and
continuous joint use

Damage to cartilage
and joint tissue

Accident
Heredity
Hormone

Shape of the joints

Local pain in the joint
Stiffness of the joints

Friction sound during
joint

Movement feeling of
swelling

[1] Yang et. al, History of Total Knee Replacement, 2010
[2] Vaienti et. al, Understanding the human knee and its relationship to total knee replacement, 2017

1. Conservative
« Daily habits / Exercise
* Auxiliary device

» Medicine treatment

2. Arthroscopic cure
* Clean the inside of the joint

* Remove synovium active film

3. Total Knee Arthroplasty
* Final treatment for arthritis

* Implantation for damaged knee

4. Benefits of Total Knee Arthroplasty

+ Elimination the lesion and release pain

* Restore the kinematic function of lower limb
* Recover the varus/valgus knee to normal

* Return to daily activities
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[3] Delport H, Labey L, De Corte R, Innocenti B, Sloten JV, Bellemans J. Clin Biomech. 2013;28(7):777-782.
[4] Sim J, Lee Y, Kwak J, Yang S, Kim K, Lee B. Clin Orthop Surg. 2013;5(4):287-291.

[5] Lee H, Kim S, Park Y. Arch Orthop Trauma Surg. 2020;140(10):1523-1531.

[6] ROSSI, Roberto, et al. International orthopaedics, 2019, 43.1: 151-158.
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PANE S

Osteotomy Selective Needle Punturing’ Selective Femoral Origin Release®

Techniques such as medial epicondylar osteotomy and selective needle puncturing have shown promise for soft tissue
balancing.

However, further clinical trials and biomechanical studies are required to assess and validate these methods for patient
outcomes

[7] REZAEI, Arash, et al. Precision soft tissue balancing: grid-assisted pie-crusting in total knee arthroplasty. Frontiers in Surgery, 2024, 11: 1331902.
[8] Lee S, Yang J, Lee Y, Yoon J. A novel medial soft tissue release method for varus deformity during total knee arthroplasty: femoral origin release of the medial collateral ligament. Knee Surg Relat Res. 2016;28(2):153-60.
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1. Introduction

The human knee jo

early observational stud
bility, were introduced ( and I, 1943; A
44). The authors described the loosening and tightening of igs- |
ments during flexion, the elongarions when shear or torque loads
were applied, and the effect of the interacting bearing surfaces
on changing the ligament lengihs. The anaomy of the cruciate
ligaments were Later studied in d inferences made about
thelr function (Giegis et al, 1975, 276). Two ba

of each cruciate were identified

and tightened at
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The superficial medial collateral ligament is the primary
medial restraint to knee laxity after cruciate-retaining or
posterior-stabilised total knee arthroplasty: effects of implant
type and partial release

Kiron K. Athwal' - Hadi E Daou’ - Christoph Kittl' - Andrew J. Davies -
David J. Deehan’ - Andrew A. Amis'*
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Previous studies have focused on passive flexion scenarios

=> Significant gap in understanding of how MCL tension
affects functional knee biomechanics in dynamic condition

[9] Lee S, Yang J, Lee Y, Yoon J. A Novel Medial Soft Tissue Release Method for Varus Deformity during Total Knee Arthroplasty: Femoral Origin Release of the Medial Collateral Ligament. Knee Surg Relat Res. 2016;28(2):153-160.
[10] Miiller J, Zakaria T, van der Merwe W, D’Angelo F. Computational Modelling of Mobile Bearing TKA Anterior-Posterior Dislocation. Comput Methods Biomech Biomed Engin. 2016;19(5):549-562.
[11] Reynolds R, Walker P, Buza J, Mechanisms of Anterior-Posterior Stability of the Knee Joint under Load Bearing. J. Biomech. 2017;57:39-45.
[12] Athwal K, Daou HE, Kittl C, Davies A, Deehan D, Amis A. The Superficial Medial Collateral Ligament is the Primary Medial Restraint to Knee Laxity after Cruciate-Retaining or Posterior-Stabilised Total Knee Arthroplasty: Effects
of Implant Type and Partial Release. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2646-2655
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To investigate Impact of MCL Stiffness Adjustment on Knee Joint Mechanics

in Mechanically Aligned PS TKA.

02

7
Tensioning -
+40% RYGLERRY E /
03 = 5; 3
A
s LS
EN R
SV LZM Model Bl = 2 o] ﬁ
04 § g °lE e
S E 7S
01 s 5 1
o= -
—_ 1w 4
£ |5 g
2 o= °
- 5 Y3 4
2 1
=
> 0

AL Model C1

Medial contact force (xBW)

Internal-External rotation ()

-40% EBYLEEEY)

0 20 40 60 80 100 120
Knee flexion angle (%)

Releasing




Sejong Univ.
Dept.
Mechanical
Engineering.

Materials & Methods




Materials & Methods

Sej°[’)‘e%tuni"- AnyBody Modeling System
Mechanical (AMS) v/7i4.2
Engineering. ‘

01

Degrees of freedoms (DOF)
of Hip Joint

/ Contact conditions'? \ gﬁilz::?iusupm_Infenor

.enter of body mass fixed
for mediolateral axis

Definition .
*  Tibiofemoral (Medial/Lateral) Contact Helght
O 3 «  Patellofemoral (Medial/Lateral) Contact 175 cm

Properties and Contact Analysis

9
*  Pressure Modulus: 9.3 X lfn—;v

04 =it V; : Volume

F=P+V,

A; : Triangle Area
d; : Penetration Depth
F; : Contact Force

P : Pressure Module

DOF of Ankle Joint
Translation: Medio-Lateral
Rotation: Flexion-Extension,

Varus-Valgus

(=== == >

Foot translation fixed

Weight

/ 75 kg

[13] FREGLY, Benjamin J.; BEI, Yanhong; SYLVESTER, Mark E. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. Journal of biomechanics, 2003, 36.11: 1659-1668.D’LIMA,
Darryl D., et al. In vivo knee moments and shear after total knee arthroplasty. Journal of biomechanics, 2007, 40: S11-S17.
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Ligament Wrapping Surface

01

FDK DOFs, a("P%). ;
. . 1
04 Inverse dynamic analysis I
1
1
Kinematic analysis 1 Initialize FDK DOFs, a("PK)
1
Over-determine 1
Determine min G (¥(a.0) 1y Compute FDK residual forces, fFPK)
®(q,t) =0 st I
®(FDK) (@ - aFPK) = 0 ®(g,0) = 0 : — .
& (FDK) (@ - aFPK) = I Exit if residual forces are below tolerance
1
Muscle recruitment 1 . DK
I Compute Jacobian matrix, fa(m)
= |
£ 1 Compute a new a(FPX) from:
-1
s.t.[cm ¢®  ¢EDR] {:B() =d 1 | a0 = qo0 4 g ( f;f;%’,(())) i)
f Where y is determined by a golden section
0<sfM™M <y line search
Y
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oept Ligament Propertiest*
ET\ZT:::rl.cna; . J - P . Model Detailed
Ligament  Stiffness (N)  Reference strain Ligament configuration variations values
01 LCL 4000 0.06 Tension
ensioning aMCL: 3500 N/m
aMCL 2500 -0.02 +40% BYLEEEIPAN MCL: 4200N/m
cMCL 3000 0.04 PMCL: 3500N/m
pMCL 2500 0.05
PFL 4000 0.06 aMCL: 3000 N/m
+20% [VGEEREIES  ¢cMCL: 3600 N/m
OPL 2000 0.07 pMCL: 3000 N/m
03 mCAP 2500 0.08
ICAP 2500 0.06 aMCL: 2500 N/m
¢MCL: 3000 N/m
04 ALS 2000 0.06 pMCL: 2500 N/m
aCM 2000 -0.27
pCM 4500 -0.06 aMCL: 2000 N/m
SMPFL 2000 0.1 > IL7 Model C1 ¢MCL: 2400 N/m
pMCL: 2000 N/m
mMPFL 2000 0.1
IMPFL 2000 0.1
aMCL: 1500 N/m
SsLPFL 1000 0.15 -40% Model C2 ¢MCL: 1800 N/m
mMLPFL 1000 0.15 Releasing pNICL: 1300
iLPFL 1000 0.15
[14] MARRA, Marco A., et al. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. Journal of biomechanical engineering, 2015, 137.2: 020904.
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Literature Review Musculoskeletal Model
Author Title 8
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24
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Tibiofemoral joint contact force in deep knee — :5 3 -
Nagura et. al [16] flexion and its consideration in knee osteoarthritis g 2
and joint replacement S
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Tibiofemoral contact force
_ 12 1
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p— |
B | /
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[15] D'Lima et. al, In vivo knee moments and shear after total knee arthroplasty. 2007

[16] Nagura et. al, Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. 2006
[17] Escamillaet. al, Effects of technique variations on knee biomechanics during the squat and leg press. 2001

[18] Masonet. al, Patellofemoral joint forces. 2008 [26] Kim et. al, Different intraoperative kinematics with comparable clinical outcomes of ultracongruent and posterior stabilized mobile-bearing total knee arthroplasty. 2016
[19] Kim et. al, Different intraoperative kinematics with comparable clinical outcomes of ultracongruent and posterior stabilized mobile-bearing total knee arthroplasty. 2016
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Kinematic Properties
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Discussion & Conclusion

[

Discussion

» This study provides quantitative data on the changes in femoral rollback and rotation when MCL stiffness is adjusted,
offering practical guidance for surgeons during intraoperative decision-making.

» Adjusting MCL stiffness had measurable effects on femoral rollback, femoral rotation, and joint contact force, with the
changes most pronounced in Model B2.

* In Model B2, a significant movement was observed in the initial phase of knee flexion (0°-2°).

« Excessive movements in the early phases of knee flexion, as seen in Model B2, could result in uneven load distribution
across the knee, potentially accelerating wear of the polyethylene insert and leading to premature prosthesis failure.

f
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Discussion & Conclusion
[ Discussion ]
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Vechinical » Despite the significant effects of MCL stiffness on knee kinematics, the study showed minimal changes in muscle
=noineering. activity across the different models.

01 « In multi-body dynamics simulations, it is essential to achieve equilibrium between internal forces (e.g., ligament and
muscle forces) and external forces (e.g., ground reaction forces or applied loads) for the model to converge and produce
valid results.

2 . : . . .

0 « Ligament structures, especially the MCL, which absorbed most of the force changes resulting from stiffness
adjustments, reducing the need for compensatory muscle activity.

03

» Previous research supports this finding, suggesting that in mechanically aligned TKA, passive structures like ligaments

play a more prominent role in maintaining stability compared to active muscle forces [20,21].
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[20] KERNOZEK, Thomas W.; RAGAN, Robert J. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clinical biomechanics, 2008, 23.10: 1279-1286
[21] DELP, Scott Lee. Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Stanford University, 1990.
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[ Conclusion
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» Increasing MCL tension may enhance stability, it also raises the risk of excessive joint loading and
accelerated prosthetic wear.

» Based on these findings, maintaining MCL stiffness within 20% of the normal range is advisable to
ensure joint stability while avoiding undue mechanical stress on the implant.

[ Limitation

» The study was conducted using a specific implant type, which may limit the generalizability of the
findings to other TKA designs.

« Dynamic motion conditions, such as high-speed activities or pivoting movements, were not considered in
this study, which may have revealed different interactions between ligament stiffness and muscle
activity.

» The study did not account for variations in patient-specific factors, such as differences in muscle strength
or ligament laxity, which could influence the results.
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Abstract

To investigate the biomechanical effects of medial collateral ligament (MCL) stiffness

adjustments on knee kinematics—medial femoral rollback, femoral rotation, and joint Introduction

contact forces—in mechanically aligned posterior-substituting (PS) total knee Materials and methods

arthroplasty (TKA). A musculoskeletal model simulating squatting was developed using Paeiler

Kim, J., Jung, TG., Shin, T. et al. Impacts of medial collateral ligament (MCL)
stiffness adjustment on knee joint mechanics in mechanically aligned posterior-
substituting (PS) total knee arthroplasty (TKA). Biomed. Eng. Lett. 15, 455—
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