Impact of Ligament Stiffness Adjustment on Knee Joint Mechanics in Mechanically Aligned Posterior-Stabilized (PS) Total Knee Arthroplasty (TKA)

Jun Seo Kim¹), Dai-Soon Kwak²), In Jun Koh³), Dohyung Lim¹)⁺

- 1) Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- 2) Catholic Institute for Applied Anatomy, Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- 3) Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

[†] Corresponding author: Dohyung Lim (dli349@sejong.ac.kr)

Sejong University Musculoskeletal Bioengineering Laboratory

Dept. Mechanical Engineering.

Contents

I Introduction

- II Materials & Methods
- III Results
- **IV** Discussion & Conclusion

Treatment Process for Knee Osteoarthritis^{1,2}

Dept. Mechanical Engineering.	Disease	Cause	Symptom
01		Aging of joints	• Local pain in the joint
02		• Obesity	• Stiffness of the joints
03		• Excessive and continuous joint use	Friction sound during joint
04	Osteoarthritis (Degeneration)	• Damage to cartilage and joint tissue	• Movement feeling of swelling
0-1		• Accident	
		• Heredity	Parts
		Hormone	
		• Shape of the joints	
	[1] Yang et. al, History of Total Kno	ee Replacement, 2010	

[2] Vaienti et. al, Understanding the human knee and its relationship to total knee replacement, 2017

- 1. Conservative
- Daily habits / Exercise
- Auxiliary device
- Medicine treatment

2. Arthroscopic cure

- Clean the inside of the joint
- Remove synovium active film
- 3. Total Knee Arthroplasty
- Final treatment for arthritis
- Implantation for damaged knee
- 4. Benefits of Total Knee Arthroplasty
- Elimination the lesion and release pain
- Restore the kinematic function of lower limb
- Recover the varus/valgus knee to normal
- Return to daily activities

Impacts of Soft Tissue Balance^{3,4,5,6}

[6] ROSSI, Roberto, et al. International orthopaedics, 2019, 43.1: 151-158.

- Techniques such as medial epicondylar osteotomy and selective needle puncturing have shown promise for soft tissue balancing.
- However, further clinical trials and biomechanical studies are required to assess and validate these methods for patient outcomes

[7] REZAEI, Arash, et al. Precision soft tissue balancing: grid-assisted pie-crusting in total knee arthroplasty. Frontiers in Surgery, 2024, 11: 1331902.

[8] Lee S, Yang J, Lee Y, Yoon J. A novel medial soft tissue release method for varus deformity during total knee arthroplasty: femoral origin release of the medial collateral ligament. Knee Surg Relat Res. 2016;28(2):153–60.

Sejong Univ. Dept. Mechanical Engineering.

01

02

03

04

Literature Review

[9] Lee S, Yang J, Lee Y, Yoon J. A Novel Medial Soft Tissue Release Method for Varus Deformity during Total Knee Arthroplasty: Femoral Origin Release of the Medial Collateral Ligament. Knee Surg Relat Res. 2016;28(2):153-160.
[10] Müller J, Zakaria T, van der Merwe W, D'Angelo F. Computational Modelling of Mobile Bearing TKA Anterior-Posterior Dislocation. Comput Methods Biomech Biomed Engin. 2016;19(5):549-562.

[11] Reynolds R, Walker P, Buza J, Mechanisms of Anterior-Posterior Stability of the Knee Joint under Load Bearing. J. Biomech. 2017;57:39-45.

[12] Athwal K, Daou HE, Kittl C, Davies A, Deehan D, Amis A. The Superficial Medial Collateral Ligament is the Primary Medial Restraint to Knee Laxity after Cruciate-Retaining or Posterior-Stabilised Total Knee Arthroplasty: Effects of Implant Type and Partial Release. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2646-2655

II Materials & Methods

Sejong Univ.

Dept.

Mechanical Engineering.

 0°

02

03

04

Materials & Methods

[13] FREGLY, Benjamin J.; BEI, Yanhong; SYLVESTER, Mark E. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. Journal of biomechanics, 2003, 36.11: 1659-1668.D'LIMA, Darryl D., et al. In vivo knee moments and shear after total knee arthroplasty. Journal of biomechanics, 2007, 40: S11-S17.

Dept.

Mechanical Engineering.

01

02

03

04

Materials & Methods

Musculoskeletal Model Construction

Ligament Wrapping Surface

Materials & Methods

Ligament Stiffness Adjustment

Dept. Mechanical		Ligament Properties ¹⁴						
Engineering.		Ligament	Stiffness (N)	Reference strain				
01		LCL	4000	0.06				
01		aMCL	2500	-0.02				
		cMCL	3000	0.04				
02		pMCL	2500	0.05				
02		PFL	4000	0.06				
		OPL	2000	0.07				
03		mCAP	2500	0.08				
		lCAP	2500	0.06				
04		ALS	2000	0.06				
04		aCM	2000	-0.27				
		pCM	4500	-0.06				
		sMPFL	2000	0.1				
		mMPFL	2000	0.1				
		iMPFL	2000	0.1				
		sLPFL	1000	0.15				
		mLPFL	1000	0.15				
		iLPFL	1000	0.15				

[14] MARRA, Marco A., et al. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. Journal of biomechanical engineering, 2015, 137.2: 020904.

Dept.

Mechanical Engineering

()

02

03

04

Materials & Methods

Validation of Musculoskeletal Model

[15] D'Lima et. al, In vivo knee moments and shear after total knee arthroplasty. 2007

[16] Nagura et. al, Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. 2006

[17] Escamillaet. al, Effects of technique variations on knee biomechanics during the squat and leg press. 2001

[18] Masonet. al, Patellofemoral joint forces. 2008 [26] Kim et. al, Different intraoperative kinematics with comparable clinical outcomes of ultracongruent and posterior stabilized mobile-bearing total knee arthroplasty. 2016 [19] Kim et. al, Different intraoperative kinematics of ultracongruent and posterior stabilized mobile-bearing total knee arthroplasty. 2016

III Results

Results

0+ 0

MCL Tension

Knee flexion angle (°)

Posterior MCL (pMCL) tension

Sejong Univ.

Dept.

Mechanical

Engineering.

01

02

03

04

Results

Kinematic Properties

Dept. Mechanical Engineering.

Results

TibioFemoral Joint Contact Forces

Results

Semimembranosus activity

Biceps femoris activity

Engineering.

IV Discussion & Conclusion

Discussion & Conclusion

Discussion

- This study provides **quantitative data** on the changes in femoral rollback and rotation when **MCL stiffness is adjusted**, offering **practical guidance** for surgeons during intraoperative decision-making.
- Adjusting MCL stiffness had measurable effects on femoral rollback, femoral rotation, and joint contact force, with the changes **most pronounced in Model B2**.
- In Model B2, a **significant movement** was observed in the initial phase of knee flexion $(0^{\circ}-2^{\circ})$.
- Excessive movements in the early phases of knee flexion, as seen in Model B2, could **result in uneven load distribution** across the knee, potentially **accelerating wear of the polyethylene insert** and **leading to premature prosthesis failure**.

Sejong Univ. Dept. Mechanical Engineering.

01

02

03

04

- Sejong Univ. Dept. Mechanical Engineering.
 - 01
 - 02
 - 03
 - 04

Discussion & Conclusion

Discussion

- Despite the significant effects of MCL stiffness on knee kinematics, the study showed **minimal changes in muscle activity** across the different models.
- In multi-body dynamics simulations, it is essential to achieve **equilibrium between internal forces** (e.g., ligament and muscle forces) **and external forces** (e.g., ground reaction forces or applied loads) for the model to converge and produce valid results.
- Ligament structures, especially the MCL, which **absorbed most of the force changes** resulting from stiffness adjustments, **reducing the need for compensatory muscle activity**.
- Previous research supports this finding, suggesting that in mechanically aligned TKA, **passive structures like ligaments play a more prominent role in maintaining stability compared to active muscle forces** [20,21].

[20] KERNOZEK, Thomas W.; RAGAN, Robert J. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clinical biomechanics, 2008, 23.10: 1279-1286 [21] DELP, Scott Lee. Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. Stanford University, 1990.

Dept. Mechanical

Engineering,

01

02

03

04

Discussion & Conclusion

Conclusion

- Increasing MCL tension may enhance stability, it also raises the **risk of excessive joint loading** and **accelerated prosthetic wear**.
- Based on these findings, **maintaining MCL stiffness within 20% of the normal range** is advisable to ensure joint stability while avoiding undue mechanical stress on the implant.

Limitation

- The study was conducted using a specific implant type, which may **limit the generalizability of the findings to other TKA designs**.
- Dynamic motion conditions, such as high-speed activities or pivoting movements, were not considered in this study, which may have revealed **different interactions between ligament stiffness and muscle activity**.
- The study did not account for variations in **patient-specific factors**, such as differences in muscle strength or ligament laxity, which could influence the results.

Sejong Univ. Dept. Mechanical Engineering.

Thank You

Junseo Kim wnstj0331@gmail.com

Dohyung Lim (Corresponding author) dli349@sejong.ac.kr

Home > Biomedical Engineering Letters > Article

Impacts of medial collateral ligament (MCL) stiffness adjustment on knee joint mechanics in mechanically aligned posterior-substituting (PS) total knee arthroplasty (TKA)

Volume 15, pages 455–465, (2025) Cite this article

Junseo Kim, Tae-Gon Jung, Taejin Shin, SeongHun Kim, Dai-Soon Kwak, In Jun Koh & Dohyung Lim 🏹 Use our pre-submission checklist → Avoid common mistakes on your manuscript.

Abstract	Sections	Figures	References	
To investigate the biomechanical effects of medial collateral ligament (MCL) stiffness	Abstract			
adjustments on knee kinematics—medial femoral rollback, femoral rotation, and joint	Introduction			
contact forces—in mechanically aligned posterior-substituting (PS) total knee	Materials and I	Materials and methods		
arthroplasty (TKA). A musculoskeletal model simulating squatting was developed using	Deculte			

Biomedical Engineering Letters

Ø

Aims and scope \rightarrow

Submit manuscript \rightarrow

Kim, J., Jung, TG., Shin, T. et al. Impacts of medial collateral ligament (MCL) stiffness adjustment on knee joint mechanics in mechanically aligned posteriorsubstituting (PS) total knee arthroplasty (TKA). Biomed. Eng. Lett. 15, 455-465 (2025). https://doi.org/10.1007/s13534-025-00463-x