The webcast will start in a few minutes....

Simulations as a tool for human-centered exoskeleton design

Outline

- Brief introduction
- Today's webcast:
 - Simulations and exoskeleton design
 - AnyBody and exo simulations
 - Case studies
- Questions and answers

Presenter:

Ananth Gopalakrishnan, PhD, Product specialist AnyBody Technology (DK)

Pavel Galibarov Sr. Engineer AnyBody Technology

Control Panel

The Control Panel appears on the right side of your screen.

Submit questions and comments via the Questions panel.

Questions will be addressed at the end of the presentation. If your question is not addressed we will do so by email.

Musculoskeletal Simulation

Motion data
Kinematics + Forces

ANYBODY
Modeling System

Body Loads

- Joint moments
- Muscle forces
- Joint reaction forces

Ergonomic Analysis

Load Cases for Finite Element Analysis

Surgical Planning and Outcome Evaluation

Simulations for Human-Centered Exoskeleton Design

Outline

- Act 1: The 'Pain points' and Human-Exo Simulations
- Act 2: Intro to simulations in AnyBody
- Act 3: Case studies

Act 1

The 'Pain points' and Human Exo-Simulations

The Design Cycle

Reducing time and costs of R&D

Proving benefits & safety to users

The Design Cycle

Pain Point 1
Reducing time and costs of R&D

Pain Point 2
Proving benefts & safety to users

How can Pain Points be addressed by simulation outputs

AnyBody Modeling System[™] Simulation Outputs

Human

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Exo

- Actuator forces & power
- Kinematics

Act 2

Simulations in the AnyBody Modeling System

- Step 1 Assembling Exo on Human
 - Create constraints at attachment points
 - Human-Exo Joint alignment

ANÝBODY Modeling System

Measures & Drivers

Measures specific geometry

Mpassere

Before

After

- Step 1 Assembling Exo on Human
 - Create constraints at attachment points
 - Human-Exo Joint alignment

- Step 2 Prescribing Motion
 - Motion Capture data (.c3d or BVH files)

- Step 1 Assembling Exo on Human
 - Create constraints at attachment points
 - Human-Exo Joint alignment

- Step 2 Prescribing Motion
 - Motion Capture data (.c3d or BVH files)
 - Synthesize motion

- Step 1 Assembling Exo on Human
 - Create constraints at attachment points
 - Human-Exo Joint alignment

- Step 2 Prescribing Motion
 - Motion Capture data (.c3d or BVH files)
 - Synthesize motion

- Inverse dynamics: Motion (Kinematics) → Forces
- Calculate all forces
 - Human eg. muscles, joints
 - Exo eg. motors, actuators
 - Human-Exo interface eg. straps
- Force redundancy in Human-Exo system
 - Muscle redundancy

- Inverse dynamics: Motion (Kinematics) → Forces
- Calculate all forces
 - Human eg. muscles, joints
 - Exo eg. motors, actuators
 - Human-Exo interface eg. straps
- Force redundancy in Human-Exo system
 - Muscle redundancy
 - Human-Exo reaction forces

- Inverse dynamics: Motion (Kinematics) → Forces
- Calculate all forces
 - Human eg. muscles, joints
 - Exo eg. motors, actuators
 - Human-Exo interface eg. straps
- Force redundancy in Human-Exo system
 - Muscle redundancy
 - Human-Exo reaction forces
 - How unique Forces be predicted?

How can Exo/Environment be best used to minimize muscle effort

Act 3

Case Studies

Case Studies

- Customer cases
 - Case 1: Passive, gravity-compensating arm exoskeleton
 - Case 2: Soft-Active, waist exoskeleton
- Internal cases
 - Case 3: Passive, Waist assisting device
 - Metabolic energy savings

Pain Point 1
Reducing time and costs of R&D

Pain Point 2
Proving benefts & safety to users

How can paint points be addressed by AnyBody outputs

AnyBody Modeling System[™] Outputs

Humar

- Muscle forces/activites
- Ioint force
- Metabolic Power
- Kinematic

Human-Exo Interaction

• Forces (straps, pads etc)

Exo

- Actuator forces & power
- Kinematic

"A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation", (2017) Zhou et al., Robotics and Autonomous Systems, Vol 91, Pgs 337-347

Dr. Shaoping Bai Aalborg University, Denmark

http://homes.m-tech.aau.dk/shb/

What are the ideal spring stiffnesses for the Exoskeleton?

Gravity compensation

Paralysis of C7 nerve

Drinking motions

Optimize (External tool): Spring stiffness

Goal: Min muscle effort/activity

Pain Point 1
Reducing time and costs of R&D

- Do optimized springs reduce muscle effort?
- How are Exo & Human motions coordinated?
- Maximum lifting load?

Pain Point 2
Proving benefts & safety to users

- 301116 101663
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Exc

- Actuator forces & power
- Kinematics

Pain Point 1 Reducing time and costs of R&D

- Do optimized springs reduce muscle effort?
- How are Exo & Human motions coordinated?
- Maximum lifting load?

pressure

Pain Point 2 Proving benefts & safety to users

Zhou et al. 2017

Pain Point 1 Reducing time and costs of

R&D

 Do optimized springs reduce muscle effort?

- How are Exo & Human motions coordinated?
- Maximum lifting load?

Pain Point 2 Proving benefts & safety to users

• Is the Exo comfortable to use?

AnyBody Outputs

luman

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Exo

- Actuator forces & power
- Kinematics

"Semi-Endoskeleton-Type Waist Assist AB-Wear Suit Equipped with Compressive Force Reduction Mechanism", (2017)

Inose et al., 2017 IEEE International Conference on Robotics and Automation (ICRA)

Nakamura Lab Chuo University, Japan

http://www.mech.chuo-u.ac.jp/~nakalab/

Effectiveness of existing Exo designs, verified using AnyBody

Courtesy Dr. Taro Nakamura, Chuo University

Effectiveness of existing Exo designs, verified using AnyBody

Artificial muscle

Balloon actuator

Amplification
Mechanism

Old Design

New Design

Pressurized

Inose et al. 2017

Is the Exoskeleton safe for the user?

Stoop lifting

Inose et al. 2017

Same Motion
Different Conditions
1: No Evo

1: No Exo

Stoop lifting

Courtesy Dr. Taro Nakamura, Chuo University

Same Motion
Different Conditions

1: No Exo

2: Old design

Stoop lifting

Same Motion Different Conditions

1: No Exo

2: Old design

3: New design

Stoop lifting

Inose et al. 2017

Three conditions

1: No device

2: Old device

3: New device

EMG measured

Stoop lifting

Pain Point 1
Reducing time and costs of R&D

Pain Point 2
Proving benefts & safety to users

 Does New Design reduce compressive spinal force?

Exo

- Actuator forces & power
- Kinematics

Pain Point 1
Reducing time and costs of R&D

Pain Point 2 Proving benefts & safety to users

- Does New Design reduce compressive spinal force?
- Does New Design reduce muscle effort?

ANÝBODY Outputs

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Fxc

- Actuator forces & power
- Kinematics

Average spinal muscle force

Erector Spinae EMG

Pain Point 1
Reducing time and costs of R&D

Pain Point 2 Proving benefts & safety to users

- Does New Design reduce compressive spinal force?
- Does New Design reduce muscle effort?

ANYBODY Outputs

Human

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Fxc

- Actuator forces & power
- Kinematics

Case 3: Waist Assist Exoskeleton

Internal study done at AnyBody Technology

Case 3: Waist Assist Exoskeleton

Case 3: Waist Assist Exoskeleton

What spring stiffness value minimizes Metabolic cost?

Case 3: Waist Assist Exo

Parameter Study (in AnyBody): Hip spring stiffness

ANYBODY

Case 3: Waist Assist Exo

Pain Point 1 Reducing time and costs of R&D

Pain Point 2 Proving benefts & safety to users

Low metabolic cost must be combined with other criterion

Case 3: Waist Assist Exo

Pain Point 1
Reducing time and costs of R&D

Pain Point 2
Proving benefts & safety to users

Exo reduces metabolic energy cost? By How much?

K = 25 Nm/rad

% Device	Joint Reaction	Metabolic
Benefit	(L4/L5)	Cost
Box-lifting	21.4	19.6

ANYBODY Outputs

Human

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Exc

- Actuator forces & power
- Kinematics

Case 3: Waist Assist Exo

Pain Point 1
Reducing time and costs of R&D

Proving benefts & safety to users

- Exo reduces metabolic energy cost? By How much?
- Simulations unravel unintuitive relationships between Exo performance metrics

AnyBody Outputs

Human

- Muscle forces/activites
- Joint forces
- Metabolic Power
- Kinematics

Human-Exo Interaction

• Forces (straps, pads etc)

Fxc

- Actuator forces & power
- Kinematics

Take Home Messages

Pain Point 1

Reducing time and costs of R&D

Pain Point 2
Proving benefts & safety to users

Pain Points facing Exo designers can be addressed by musculoskeletal simulation

Value of simulation outputs

Human

- Muscle forces & activity
- Metabolic Power
- Joint forces
- Kinematics with Exo

Human-Exo Interaction

• Forces (straps, pads etc)

Exo

• Actuator forces & power

Acknowledgements

- Exoskeleton and Simulation videos
- Dr. Shaoping Bai, Aalborg University
- Dr. Taro Nakamura, Chuo University

Upcoming webcasts

26 Apr: Model validation using the anatomical reachable

3-D workspace

www.anybodytech.com

Events, dates, publication list, ...

Events:

21-23 Mar: WearRAcon 2018, Scottsdale, AZ

26-29 Mar: CMBBE 2018 in Lisbon

30 Apr- 4 May: Advanced PhD course on

Musculoskeletal modeling. Aalborg University,

Denmark.

Meet us? Send email to sales@anybodytech.com

Upcoming webcasts

26 Apr: Model validation using the anatomical reachable

3-D workspace

www.anybodytech.com

Events, dates, publication list, ...

Events:

21-23 Mar: WearRAcon 2018, Scottsdale, AZ

26-29 Mar: CMBBE 2018 in Lisbon

30 Apr- 4 May: Advanced PhD course on

Musculoskeletal modeling. Aalborg University,

Denmark.

March 21 – 23, **2018**. Scottsdale Plaza Resort Scottsdale, AZ (USA)

Meet us? Send email to sales@anybodytech.com

Time for questions:

