Scaling strength in human simulation models

The web cast will start in a few minutes....

Why not spend the time checking these points:

Does your screen fit the presentation?

Try this:

The "Sharing" menu (upper right corner)->View->Autofit

Is your system set up to receive the broadcasted sound? Please follow these instructions to set up the audio: www.anybodytech.com -> Webcasts (bottom of the page)

Presenters

Kenneth Meijer (Presenter)

Arne Kiis (Webcast Host)

Janneke Annegarn INSTITUTE OF Mechanical Engineering

Panelists

Michael Damsgaard

Søren Tørholm ANYBODY RESEARCH PROJECT

Q&A Panel

- Launch the Q&A panel – here.
- Type your questions in the Q&A panel.
- Send the question to "Host, Presenter & Panelists"
- Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

k. Host		Send
k: Host	-	Send
		36110
Host		
Host & Pre	senter	
Host, Pres	enter & Panelis	ts
All Panelis	ts	
	All Panelis Mic Dams	Presenter Host & Presenter Host, Presenter & Panelis All Panelists Mic Dams

Have no sound?

Please follow these instructions to set up the audio: www.anybodytech.com/

Go to the link called <u>webcasts</u>. There is a pdf file in the bottom of the page with instructions.

Online resources

- AnyBody Technology <u>www.anybodytech.com</u>
 - Free evalutation licenses
 - Tutorials and documentation
 - Replay of webcasts
 - Further info: Email: <u>anybody@anybodytech.com</u>
- The AnyBody Research Project
 <u>www.anybody.aau.dk</u>
 - Public domain library of body models and applications
 Publications many for direct download.

Forthcoming webcasts

• <u>22 February 2007</u>:

Kinematic analysis of over-determinate Systems (the mocap interface) by Michael Skipper Andersen

Sign up at www.anybodytech.com

Scaling strength in human simulation models

Background

Muscle function and mobility in chronically ill patients (Diabetes & COPD) and elderly

Patients suffer from

- Reduced muscle mass / quality
- Limitations in mobility

Evaluate relationships with simulation models
 Subject/population specific models

Option 1; detailed assessment of patient data

Fernandez and Pandy 2006

Option 2; scaling of reference model

- Built reference model from anatomical data
- Implement scaling laws
 Bone geometry
 Muscle morphology

www.anybodytech.com

1: Geometric scaling

Force ~ $M^{2/3}$

- Simple surface to volume relationship with body mass
- Between species
- Within species?

Scaling within species

Humans vary greatly in shape and size

Humans vary greatly in the amount of force they can produce

Factors to consider

Body size

Length

 \Box Mass (M_{segment} ~ M_{Body}^(1.1-1.4))

Body composition

□ Fat %

- Age
- Gender
- Activity level / Training status

Aim of the study:

- To validate existing strength scaling methods with experimental data on upper leg and arm strength
- Evaluate the influence of gender and age.

Experiments

Heterogeneous population men (N=34) women (N=29) Age (19-84 years)

Anthropometric measurements

- □ Body mass
- Stature
- Segment volumes

Strength measurements

 Isometric strength measurements of elbow flexion and knee extension with a CYBEX II apparatus

(N=26)

Simulation

- Development of leg and arm model in AnyBody
- AnyMuscleModel
- Simulation;
 - Input:
 - anthropometrics
 - measured torque
 - Output:
 - predicted maximal muscle force
 - required muscle force
- **PSSF**= predicted force / reference force
- MSSF=required force / reference force

^{1.} www.anybodytech.com

Scaling within AnyBody

- Bone geometry scaling
 Based on static load considerations
- Muscle strength scaling
 - 1. Geometric scaling for segment mass
 - 2. Geometric scaling including segment mass and body composition

www.anybodytech.com

1: Geometric scaling

$$F_{1, predicted} = F_0 K_m^{2/3}$$

 $F_{1, predicted}$ = scaled force of the subject in question

- F_0 = reference force
- K_m = mass ratio: mass of the segment that needs to be scaled divided by the reference segment mass

2: Segment mass and body composition scaling

$$F_{1, predicted} = F_0 \frac{K_m}{K_L} \frac{R_{muscle,1}}{R_{muscle,0}} = F_0 \frac{K_m}{K_L} \frac{1 - R_{other} - R_{fat,1}}{1 - R_{other} - R_{fat,0}}$$

 $F_{1, predicted}$ = scaled force of the subject in question

= reference force

- K_m = mass ratio: mass of the segment that needs to be scaled divided by the reference segment mass
- K_L = length ratio: the scaled segment mass divided by the original segment mass
- R_{muscle} = % muscle mass

$$R_{other}$$
 = % other tissue = 0.5

= % fat (calculated from BMI, age & gender; Gallagher 2000)

 R_{fat}

 F_0

3: Empirical scaling, including age & gender effects

- Multiple linear regression
- Cumulative approximation

Results; anthropometry

Physical characteristics	Men (n = 34)	Women (n = 29)
	Range	Range
Age (years)	19.0 - 84.0	20.0 - 76.0
Weight (kg)	56.5 - 94.0	51.0 - 82.0
Height (m)	1.59 - 1.98	1.57 - 1.81
BMI (kg/m2)	19.2 - 34.8	17.6 - 30.5
Mass thigh (kg)	4.24 - 8.15	4.13 - 8.06
Length thigh (m)	0.34 - 0.45	0.30 - 0.41
Mass upper arm (kg)	1.56 - 2.73	1.22 - 2.20
Length upper arm (m)	0.28 - 0.37	0.27 - 0.32

Results leg; theoretical scaling

- Poor prediction for geometric scaling
 - overestimation at low strength
 - underestimation at high strength

Improvement when accounting for body composition

Results leg; empirical scaling

• Reasonable prediction for both methods

Results; leg vs. arm

- Arm group was more homogeneous
- Substantial underestimation arm strength

Results; arm

• Empirical scaling is needed to get realistic strength values

Discussion (1)

- Geometric scaling is not sufficient for an adequate model prediction
- Empirical scaling, accounting for age and gender is needed

Discussion (2)

 Resolve the remaining discrepancies between measured and predicted strength
 Measurement inaccuracies
 Inadequate bone geometry scaling
 Inadequate estimation of body composition

Future steps

- Include more empirical data, particularly for the arm
- Apply scaling to model that includes length-force and force-velocity curves
- Derive empirical scaling laws for patient populations and apply them to study muscle function and mobility

Acknowledgements

Janneke Annegarn (UM)

- Lex Verdijk (UM)
- Hans Savelberg (UM)
- Mark de Zee (AnyBody)
- John Rasmussen (AnyBody)

Contact info

Kenneth Meijer

Movement Sciences Group Faculty of Health Medicine and Life Sciences Universiteit Maastricht

Universiteitssingel 50, 6229 ER PO Box 616, 6200 MD Maastricht +31 43 3881384 kenneth.meijer@bw.unimaas.nl