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Musculoskeletal Simulation
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Modeling System  Joint moments
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.. * Joint reaction forces

Motion Data
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The Problem




Not quite a problem?

cup
Metal or polyethylene LINER
Ceramic or
polyethylene

C
ementless or cemented
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What causes hip OA?

Major health problem

v

Primary Secondqny (3R risk 25%
(85%)

v N\

F AI (True primary arthrosis of the
hip)

* Ganz et al., Clin Othop Relat Res, 2008
Harris WH, Clin Orthop Relat Res,
1986



Shape

 FAI

Femoroacetabular impingement (FAI) is a mechanical hip disorder defined as
early and/or repetitive contact between the acetabular rim and the proximal
femur, potentially resulting in damage to the hip joint cartilage and labrum in
young adults.

* Types

Cam Pincer Mixed



The questions we all have

Shape of the normal distribution

.® EqgualHalves

2.13%

-3¢ -20 -lo v

No. of standard deviations from the mean



There is more than meets the eye




Aim

» Develop a pipeline for exploring the impact of shape variation and
related surgery on contact stresses of the hip joint

1.Explore peak static and dynamic hip joint reaction forces
2.Explore hip joint contact stress patterns

3.Explore the impact of cam resection surgery on hip joint contact stress



1. Mapping Variation in Joint Reaction Forces

* Understanding hip joint loading during relevant static and
challenging dynamic activities

* Experimental computational modeling design:
* Musculoskeletal model in Anybody

* Inverse dynamics




Static sitting configurations

JRationale
* Prolonged, deep seated sitting triggers hip pain in FAI patients
* Prominent bumps: contact > 60° hip flexion
* Median sitting time in Western society around 5h/day

* No data on joint loading during kneeling chair sitting

d Aim

* Quantity resulting joint loading and required hip flexion during 3 distinct
sitting configurations: Car seat - simple chair - kneeling chair



Static sitting configurations

dM&M
* Anybody
« Average adult Caucasian male (1.74 m, 75kg)

 Validated seated application model AMMR (Rasmussen
et al, 2009)

* Validation:
* Orthoload HJRF library
* 3 male subjects

» Good agreement for chair and car seat




Results & conclusion®

* Chair - car seat - kneeling chair
HJRF: 22%BW - 22%BW - 9%BW
«  Hip flexion: 63° - 79° - 50°

* Kneeling chair:
* Relative reduction of 50% in reaction force in kneeling chair

* Lower hip flexion, under threshold for femoracetabular
conflict

 Greatest ergonomic potential in case of FAI

*Van Houcke et al., Computer-based estimation of the hip joint reaction force and hip flexion angle
in three different sitting configurations, Applied Ergonomics, 2017




Dynamic deep squat

dRationale
* Available hip kinetics = Orthoload database = >60yrs
< 50° hip flexion and < 80° knee flexion > 100° knee and hip flexion
' VS

x| |4:5 By

— "‘";EAL TIME VIDED [HiIp CONTﬁ\:c: FZJD:CalEplar[]:egative,% ;

== T T Force F, Femur Spstem [%E'w] HSRKE

R —

Bergmann et al., 2001, Journal of Biomechanics



Dynamic deep squat

(JRationale

 Anatomical extra-articular variation

* Varus valgus

 Femoral version
e Pelvic width




Aim

* Report functional ROM and hip joint loading in young athletic
males

* Provide personalized model solution for estimating hip joint
loading during deep squat



M&M

1 Data collection
 Athletic males (18-25 yrs old)

* Exclusion criteria:
* history of hip pain/surgery
* inflammatory/neuromuscular joint diseases
* FADIR+ and/or FABER asymmetry >5cm

Maximal squat gaitlab (OptiTrack®, Kistler®)

MRI lower limb + skin marker position

Segmentation pelvis, femur, shank
Position skin marker relative to bones




M&M

dData analysis

AnyBody Modelling System

TLEM 2.0 muscle definitions

Gluteal wrapping definition

Inverse Dynamics - Polynomial solver
Morphed muscle-bone geometry
Direct skin marker position from MRI

B Y Y
AN .a.&




M&M

ANORMALIZATION

* Reaction forces in % bodyweight
* Squat deepest point = peak knee flexion at 50% - quadratic interpolation

* Squat time - PLS regression

UAVALIDATION
e Orthoload
 Knee Bend trials

 Hip joint reaction force, hip flexion and knee flexion
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HIRF

Table 1. Demographics, anthropometrics and kinetical results during full squat cycle from study
group of 35 young, athletic subjects.

Mean (95 Cl)
Age (years) 21.9 (21.2-22.7)
Height (cm) 182 (180-184)
Weight (kg) 70.7 (68.0-73.4)
BMI (kg/m?) 21.4 (20.8-22.0)
Sports (hours per week) 3.8 (3.1-4.5)

Neck-shaft angle (°)
Femoral version (°)
Duration squat (s)
Peak knee flexion (°)
Peak hip flexion (°)

1296 (128.0-131.2)
9.5 (7.0-11.9)
42 (4.17-424)

112 (108.1-116.5)

107 (104.6-109.4)

Peak anterior pelvic tilt (°) 27 (24.2-30.2)
Peak hip abduction (°) 17 (15.1-19.6)
Peak hip internal rotation (°) 11 (9.0-13.6)
Peak hip joint reaction force (%BW) 274 (251.5-297.9)
Peak hip extension moment (Nm/kg) 0.56 (0.506-0.617)
Peak hip adduction moment (Nm/kg) 0.22 (0.184-0.248)
Peak hip internal rotation moment (Nm/kg) 0.12 (0.081-0.151)

95ClI: 95% confidence interval between brackets. The neck shaft angle (Boese et al. 2016) was defined as the angle
between the femoral neck axis (line connecting the centre of best fitting sphere of the femoral head and the centre of
the femoral neck) and the anatomical femoral shaft axis (line connecting the centres of the best fitting circle of the
proximal and distal diaphyseal femur). The femoral version (Victor et al. 2009; Casciaro and Craiem 2014) was defined as
the angle between the femoral neck axis and the femoral transverse axis (line connecting the centres of the best fitting
spheres of the medial and lateral femoral condyles).




Conclusion*

 Hip joint kinetics young athletic adult # THA middle aged patient

* Enables personalized kinetical evaluation of extra-articular
variation

* Milestone for population wide modelling

*Van Houcke et al., Personalized hip joint kinetics during deep squatting in young, athletic adults,
Comput Methods Biomech Biomed Engin, 2019



2. Mapping Variation in Cartilage Stress

Posterior

Load ('c]l/’ .
QRationale il 4/

 Contact stress in the hip joint
* In vitro: cadaveric experiments />

* Expensive, in vivo unfeasible

Femur

* In silico: Finite Element Analysis (FEA)
* Accurate but time consuming and CPU intensive
 Cartilage geometry
* Manually segmented outperforms parametric

¢ Very labour intensive

O Aim

* Develop and validate straightforward tools for
evaluation of hip joint stresses



M&M

* Population-averaged cartilage anatomy prediction:

Cartilage thickness defined per node on the acetabular/femoral surface

Extrusion along surface normal

Based on 10 manually segmented cartilage geometry

» Comparison with parameterized alternatives:
 Constant thickness

 Spherical fit

* Discrete element analysis (DEA)
2 layer spring model
* Only compressive forces, non-linear and linear

* Verification and validation



M&M

 Validation study group™:
* 10 healthy adults; reconstructed CT hip joint morphology

* 3 Orthoload loading scenarios: Heel strike during walking, ascending and
descending stairs

* FEA evaluation with manually segmented cartilage geometry

* Evaluation of:

Golden standard FEA with manually segmented cartilage
versus

DEA with automatically predicted cartilage geometry

*Harris et al., Finite element prediction of cartilage contact stresses in normal
human hips, J. Orthop. Res., 2012




Cartilage prediction: RMSE 0.31 £0.08 mm

Autom DEA+cart pred wp

VS

Manual FEA ﬁ Subject 1 Subject2 Subject3

* Peakstress #: 1.68 +2.63 MPa [l§ & 6‘ \ 7\ |
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Conclusion*

* DEA with population averaged cartilage prediction method offers a
suitable alternative compared to subject-specific FEA models

 Consistent underestimation of contact area and overestimation of
peak and average contact stress

* Important computational advantage

*Van Houcke et al., A combined Geometric Morphometric and Discrete Element Modeling Approach
for Hip Cartilage Contact Mechanics, Frontiers in Bioengineering and Biotechnology, 2020



3. Clinical translation

£l

D Rationale RESECTION
» Cam FAI associated with hip OA
e Cam resection surgery aimed to alleviate T
pain and prevent/delay hip OA

IN with 30 FL, 20 AD 507 of 50°

IN with 60 FL, 20 AD 307 of 40°

Nl 8 of 30°
|

o Current state of the art: |
e ROM collision simulation mEOEm

 Planning resection volume and area

EXT with 15 EXL 15% of 15°

. i NEUTRAL

* No information cartilage stresses

JAIm

 Evaluate contact mechanical impact of cam
resection in cam FAI patients




M&M

 Case-control study design

* 10 cam FAI patients (male, 18-40yrs old,
Alpha-angle >55°)

* Impingement test loading

* Patient-specific discrete element models of

1. Preoperative cam

2. Postoperative cam resection

3. Matched virtual control



Alpha angle (°)
12 o’ clock
1 o’ clock
2 o’ clock
3 o’ clock

Peak contact stress (MPa) in 90° hip flexion and increasing degrees of internal rotation

0° IR
5°IR
10° IR

Preoperative (n = 10)

57.4
73.7
69.3
56.3

50.0-64.8
70.6-76.8
66.0-72.6
51.7-60.9

A~ I~/ /N

11.3 (8.5-14.1)
12.4 (9.2-15.7)

19.9 (15.6-24.2
26.6 (19.4-33.8

39.0 (23.7-54.2
60.9 (34.0-87.9

e’ N’ N’ N

Postoperative (n = 10)

44.6
49.3
46.2
47.6

42.9-46.3)*

47 8-50.8) ***
43.9-48.5) ***
44.4-50.8) ***

e — By

11.2 (8.4-14.0)
11.5 (8.5-14.5)

11.8 (8.7-14.9)**
12.1 (9.2-14.9)**
12.4 (9.7-15.1)**
13.3 (10.3-16.3)**

Healthy Twin (n = 10)

433 (40.9-45.7)*
474 (45-49.8)***
45.6 (42.1-49.1) ***
42 (37.9-46.1) ***

10.4 (9.4-11.4)

10.7 (9.7-11.6)

11.0 (10.2-11.7)*
11.1 (10.3-11.8)**
11.4 (10.5-12.2)**
12.2 (11.1-13.2)**
13.2 (11.7-14.7)**
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Results & conclusion

* Complete and accurate resection of a cam
deformity can restore healthy articular cartilage
contact mechanics

* This cannot be extrapolated in the presence of
extensive articular cartilage damage and
therefore does not allow for long term outcome
predictions

Pre-O
P -

Post-Op

Healthy

0°IR

+90°Flex

10° IR

+90°Flex

20° IR

+90°Flex

30° IR

+90°Flex

29
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Future perspectives

AnyBody output

Non-linear data
Hip
flexion/abduction/rotation

Knee flexion
Ankle flexion

Post-processing:
searching modes of
variance (MoV)

Principal component
analysis on residuals to
analyse
inter-subject variance




Statistical model of lunge

* First mode: lunge depth
* Second mode: internal rotation and adduction during lunge

* Third mode: variation in ankle dorsiflexion during lunge

Mean - 2 standard Mean Mean + 2 standard
deviations component deviations component

1
20 20 £
100 100 100
o o o
e 0 0
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Future Kinetics of

* Upstairs/downstairs

* Cycling in different positions
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Combined SSM-DEA Ankle




Bone + Cartilage Registered SSM 4 '

(B)

Vertex-Specific Cartilage
Thickness Calculation

Bone Registered SSM (C) (D)

Cartilage Modelling

* Force dependent kinematics

VS

Shape dependent kinematics

Registration Landmark Transfer

Soft-Tissue Modelling

Segmented Model

(A) (B) (€)



Vertex-Specific Thickness Constant Thickness




Combined SSM-DEA Knee

Coronal (v) ||




Future

Personalized identification of hip at risks for OA

Planning for surgical femoroplasty-reorientational osteotomies

Evaluation of daily life activity kinetics

Integration in statistal population wide models



Thank you for your attention



