Patient-specific Musculoskeletal Modelling of Total Knee Arthroplasty using Force-dependent Kinematics

MS Andersen¹, MA Marra², V Vanheule³, R Fluit⁴, N Verdonschot², J Rasmussen¹

¹Aalborg University, Denmark, ²Radboud University Medical Centre, The Nederlands, ³Materialise, Belgium, ⁴University of Twente, The Nederlands

Winner of the 5th Grand Challenge Competition to Predict In Vivo Knee Loads

Motivation

Non-invasive e

- Muscle loads
- Joint loads.
- Bone loads.
- Ligament load
- Joint moveme
- Etc.

Insight into quar impossible or im

For clinical applications

- Patient-specific models.
- Model validity is crucial.

Grand Challenge

Competition

Competition

repository.

2. Data for First

This projects does not

store source code in

Simtk's Subversion

A unique opportunity for blind model validation

Data:

- Marker trajectories.
- Ground reaction forces
- CT scans (pre- and post-op).
- FMG.
- Measured knee forces.
- Single plane fluoroscopy.
- 2014 Competition: predict the medial and lateral knee contact forces during gait and right turn trials. (Blinded and unblinded)

an instrumented knee prosthesis. Available Downloads and Their Potential Uses: The following raw and synchronized experimental data are available for download:

and joint contact forces, since direct measurement is not feasible

under normal conditions. This project provides the biomechanics

community with a unique and comprehensive data set to validate

muscle and contact force estimates in the knee. This data set

includes motion capture, ground reaction, EMG, tibial contact

- Marker trajectories plus description of marker set and static trials (200 Hz)
- Ground reaction forces from 4 Bertec plates (1000 Hz) - EMG signals - from 14 muscles in the implanted lower limb (1000
- Tibial contact forces measured from the instrumented prosthesis (200 Hz)

force, and strength data collected from a subject implanted with

Thor Besier Contact

Driving Biological Problems

Fregly et al., (2012)

Modelling overview

Twente Lower Extremity Model (TLEM) v. 2.0 (Fluit et al, 2013)

Modelling overview

Marker tracking

Kinematics

Results

Force-dependent kinematics (FDK)

Find static equilibrium in FDK DOFs Inverse dynamic analysis

FDK reaction forces

M-Tech

FDK (Andersen et al, 2011)

- Simultaneously computes muscle, joint and ligament forces and internal joint kinematics.
- Uses *inverse dynamics* and *quasi-static force* equilibrium in selected DOFs.
- Recruitment criterion: sum of m. activities cubed.

Knee DOFs (tibiofemoral and patellofemoral)

- Knee flexion angle driven.
- Rigid patella tendon.
- 10 FDK DOFs.

Knee contact model

Rigid-rigid contact model (STL-based volume penetration).

Ligaments

- MCL, LCL, PCL, MPFL, LEPL and LTL.
- Non-linear elastic springs w/ wrapping surfaces.

Strength scaling

- Strength scaling based on segment lengths, mass and height (BMI).
 Rasmussen et al. (2005).
- Reduced strength of knee flexors and extensors after total knee arthoplasty.

The Journal of Arthroplasty Vol. 18 No. 5 2003

Knee Strength After Total Knee Arthroplasty

Mauricio Silva, MD,* Eric F. Shepherd, MD,*† Walter O. Jackson, MD,*† Jeffrey A. Pratt, MD, MPH,*† Christian D. McClung, MPhil (Cantab),* and Thomas P. Schmalzried, MD*†

Avg. isometric flex. strength reduction: 32 %.

Avg. Isometric ext. strength reduction: 31 %.

Highest reduction for low knee flexion angles.

Up to 40 % reduction around full extension.

Highly variable among subjects.

The strength of all knee flexors and extensors were reduced by 35 %.

Blinded results

Submitted January, 2014

Blinded results

Blinded results

Right turn	RMSE [N]	R ²	Gait	RMSE [N]	R ²
Medial contact force		0.92	Medial contact force	288	0.80
Lateral contact force		0.57	Lateral contact force	203	0.45
Total contact force		0.93	Total contact force	272	0.86

Model improvements

Knee contact forces released February, 2014

Most important change: Recruitment criterion

Soleus

Medialis: 3 branches Lateralis: 3 branches

GastrocnemiusMedialis: 1 branch
Lateralis: 1 branch

Multibody Syst Dyn (2012) 28:283–289 DOI 10.1007/s11044-011-9277-4

Muscle decomposition and recruitment criteria influence muscle force estimates

L. Joakim Holmberg · Anders Klarbring

$$\min_{F} \sum_{i=1}^{N} \left(\frac{F_i^{(m)}}{S_i} \right)^{p}$$
s.t. $CF = d$

$$F_i^{(m)} \ge 0$$

Soleus

Gastrocnemius medialis

Most important change: Recruitment criterion

- Idea (Happee and Van der Helm (1995))
 - Associate a cost to activating a muscle volume element, $\left(\frac{F_i^{(m)}}{S_i}\right)^p$
 - The total cost is obtained by a weighted sum over all muscle volume elements.

$$\min_{F} \sum_{i=1}^{N} V_{i} \left(\frac{F_{i}^{(m)}}{S_{i}} \right)^{p}$$
s.t. $CF = d$

$$F_{i}^{(m)} \ge 0$$

 V_i is volume of the *i*th muscle (estimated as the product of PCSA and optimum fiber length).

A split muscle is assigned a fraction of the total muscle volume.

Minor updates

Revised marker placements on the model

- The placement of the pelvis markers are particularly tricky.
 - No complete CT of pelvis.
 - Abdominal fat around the stomach.

Updated patella tendon length

 Length estimated from an unloaded knee flexion/extension flouroscopy trial.

Improved modelling of the ligaments.

Improved MPFL, LEPL and LTL wrapping around the femoral condyle and component.

Improved PCL wrapping.

Unblinded results

Submitted June, 2014

Unblinded results

M-Tech

RESEARCH PROJECT

Fluoroscopy

Fluoroscopy

Fluoroscopy

Red: Revolute joint-based knee.

Blue: FDK knee. Grey: Fluoroscopy.

Tibial frame

Lessons learned

- Good estimates of knee forces and secondary (planar) kinematics.
- The computed forces are sensitive to the muscle decomposition (with the typical recruitment criterion).
- Muscle volume weights in the recruitment improved predictions.
- Generation of patient-specific models possible but technically difficult.

Future work

- Automate the patient-specific modelling process
- Patient-specific ligament properties.
- Patient-specific strength scaling.
- Improve the prediction of co-contraction.
- Apply the model (e.g. to clinical treatment optimisation).

Thank you!

Michael Skipper Andersen, Ph.D.
Associate Professor
Department of Mechanical and
Manufacturing Engineering
Aalborg University
msa@m-tech.aau.dk

