Musculoskeletal Simulation in an Automotive Environment

The web cast will start in a few minutes....

Outline:

- Who & what is AnyBody?
- Automotive application
 - Package design
 - Ingress/egress
 - Seat development/comfort
 - others
- Questions & answers

Moonki Jung (Panelist)

Amir Al-Munajjed (Presenter)

Musculoskeletal Simulation

TECHNOLOGY

Inverse Dynamic Analysis

Subject - Specific Modeling

Possibility to scale:

- Standard subjects, like 50%, 5% or 95% or in between
- Individual subjects: from real experiments
- Population groups: elderly, pregnant, obease...

Nakashima et al. 2010

Advanced Work flow

TECHNOLOGY

- Automotive Application
 - Package design
 - Ingress/egress
 - Seat comfort
 - others

Package Design & Optimization

Typical parameters that can be optimized and analyzed using the AnyBody modeling System

Jung et al., 2009, J. Computer Science Tech.

Ford: Best position of handbreak and pedals for lowest muscle activation

Handbrake: fast movement, high muscle activation

Acceleration: long term, low muscle activation

Research & Advanced Engineering

Clutch pedal optimization

Validation Study: Braking

Validation Study: Braking

 Ford test vehicle, tunable force characteristic for brake pedal.
Partially obstructed view.

- Motion analysis: Qualisys for the upper body and the left leg; Goniometers at the right leg; Potentiometer for right heel
- External Loads: contact switch to identify heel position; pressure mapping to estimate seat support; force transducer at the brake pedal
- EMG measurements of right leg muscles

TECHNOLOGY

Research & Advanced Engineering

Rausch & Siebertz (2009), ANSYS Conf. & 27. CADFEM User's Meeting, Leipzig, Germany

Validation Study: Braking - foot

Figure 7: Validation results for the brake pedal operation.

Rausch & Siebertz (2008), FISITA 2008

Validation Study: Braking - hand

Figure 6: Validation results for the steering task. The maximum activity during this task was far below 100%. This results in a low signal to noise ratio of the EMG signal compared to signal during maximum voluntary force.

Rausch & Siebertz (2008), FISITA 2008

Position of door handle on shoulder

- Automotive Application
 - Package design
 - Ingress/egress
 - Seat comfort
 - others

CREW INGRESS/EGRESS FOR VEHICLES

Reed et al. 2009

Ingress/egress comfort

http://www.e90post.com/forums/showthread.php?t=594473

Rasmussen et al. 2011, ORS R. Bichler 2010, webcast 28Apr

Abbildung 72: Lösungsweg zu den Sitzkonstruktionsrichtlinien für einen ergonomischeren Einstieg in den Audi TT.

Buchner et al. 2013, Master Thesis

Optimum placement of an assistive handle for egress

Rasmussen & Tørholm Christensen 2005, SAE Technical Paper 2005-01-272

- Automotive Application
 - Package design
 - Ingress/egress
 - Seat comfort
 - others

Active MotionTM seating

de Zee et al. 2005, SAE Technical Paper 2005-01-2705

Analysis of different postures

Loading of lumbar spine for different postures

Loading of cervical spine for different postures

Data exchange between digital human models

UDASim – Data exchange of digital human models

Bonin, D., Wischniewski, S., Wirsching, H.-J., Upmann, A., Rausch, J. & Paul, G. (2014), "**Exchanging data between Digital Human Modelling systems: a review of data formats**", 3rd International Digital Human Modeling Symposium, Tokyo, Japan.

ANYBODY TECHNOLOGY

Sitting-acquired deep tissue necrosis

AnyBody Seated Human Boundary conditions

CASIMIR Non-linear material & geometry

Abaqus Buttock strain

Cell necrosis Pressure ulcer

PhD Thesis, Olesen et al., 2012

http://www.anybodytech.com/download.html?did=publications.files&fname=Olesen_2012_The%20Influence%20of%20Sitting %20Conditions%20on%20Soft%20Tissue%20Loads.pdf

AnyBody Seat Model

TECHNOLOGY

Package design – elastic seat:

- Seat & backrest stiffness adjustable
- Pedal & stearing wheel position adjustable
- Forces in pedal & stearing wheel adjustable

AnyBody Seat Model

Driver, passenger:

- Size/ anthropometry
- Individual muscle strength

Compute:

- Muscle activation
- Joint loads
- Sinking-In:

Where is the H-Point?

• Braking:

How reacts driver on increasing pedal force?

Hard pedal push

- How does H-point change?
- What forces are in individual foot bones/joints?

Rasmussen et al. 2014

Al-Munajjed et al. 2014

Long term sitting

- Fatigue
- => Very individual
- Comfort

Not fully implemented into AnyBody Modeling System, but can be done for individual tasks!

- Automotive Application
 - Package design
 - Ingress/egress
 - Seat comfort

others

Effects of acceleration on the driver

- Motorbike/ car / truck/ train / ...
- Positive acceleration
- Braking/ neg acceleration

Previous Webcast on commuting in Tokyo! www.anybodytech.com

J. Groud/ Terrabyte, Japan

Effects of side force on the driver

- Driving in a curve
- Amusement park: Roller coaster
- Space application: centrifuge

Effects of bumps on the driver

- Speed bumps
- Vibration
- Road types

Work Ergonomics: manufacturing/ assembly lines

- Lifting heavy objects, risk of overloading joints or muscles
- Repetitive tasks, risk of injuries due to muscle fatigue

Work Ergonomics

Koblauch et al. THE MODELING OF TWO AIRPORT BAGGAGE HANDLER WORK TASKS; ISCSB 08/ 2013, Natal, Brazil

Work Environment: Exoskeletons/ assistive devices

Conclusion

Overview of Application using AnyBody for Automotive Engineering:

- Package design
 - Optimize parameters to minimize loads in joints or muscles
- Ingress/egress
 - What loads are in joints or muscles during different ingress/egress trials
- Seat development
 - What muscle activations occur on different seats
 - Interaction with other digital human models
- Others
 - Acceleration/ occupational health/ assambly lines

- www.anybodytech.com
 - Events, dates, publication list, ...
- www.anyscript.org
 - Wiki, Forum
- <u>www.youtube.com/anybodytech</u>
 - Videos, help, demos, tips & tricks
- <u>inquiry@anybodytech.com</u>

