

The webcast will start in a few minutes....

Musculoskeletal modeling of Dragonflies

Outline

- Introduction by the Host
- Musculoskeletal modeling of Dragonflies
 - Sina David & Alexander Blanke
- •Questions and answers

Sina David

Phd student German Sport University Cologne Institute of Biomechanics and Orthopaedics (Presenter)

Arne Kiis AnyBody Technology (Host)

AnyBody Modeling System

Musculoskeletal analysis

AnyBody Managed Model Repository

Wide range of simulation options

- Motion capture
- Ground reaction force prediction
- Imaging → Patient-specific model
- Man-machine interactions

Rasmussen et. al. (2011), ORS Annual Meeting

Resources

Publication list http://www.anybodytech.com/index.php?id=publications

Youtube Channel https://www.youtube.com/user/anybodytech

Tutorials http://www.anybodytech.com/fileadmin/AnyBody/Docs/Tutorials/_template/FrontPage/FrontPage.html

Email sales@anybodytech.com

From the Publication list

- ...

- * David, S., Funken, J., Potthast, W. & Blanke, A. (2016), "Musculoskeletal modeling of the dragonfly mandible system as an aid to understanding the role of single muscles in an evolutionary context", Journal of Experimental Biology, vol. 219, pp. 1041-1049. [DOI]
- * NEW!!! David, S., Funken, J., Potthast, W. & Blanke, A. (2016), "Musculoskeletal modelling under an evolutionary perspective: deciphering the role of single muscle regions in closely related insects", Journal of the Royal Society Interface, vol. 13 (123). [DOI]

Load Cases for Finite Element Analysis

Surgical Planning and Outcome Evaluation

AnyBody Modelling System

Musculoskeletal modeling of Dragonflies

Sina David PhD Student German Sport University Cologne, Institute of Biomechanics and Orthopaedics Dr. Alexander Blanke, Research Fellow, University of Hull,

Department of Mechanical Engineering

Upcoming Webcasts:

- **Feb 09, 2017:** Development of a biomechanical model of the wrist joint for patient-specific model guided surgical therapy planning
 - Jörg Eschweiler, PhD.
 Head of the group "Biomechanical Modelling and Simulation" of the Chair of Medical Engineering at the Helmholtz-Institute Aachen, RWTH Aachen University

Events:

- PhD Course: Predictive Musculoskeletal Modelling
 - At Aalborg University, Denmark
 - $^\circ$ $~~27^{th}$ to 31^{st} of March 2017
 - Registration is open: goo.gl/yVrHqS

www.anybodytech.com

• Events, dates, publication list, ...

www.anyscript.org

• Wiki, Forum

Check previous webcasts on: http://youtube.com/anybodytech

Musculoskeletal Modeling of Dragonfly Heads

Sina David & Alexander Blanke

ATPosters.

Several mouthpart types evolved multiple times independently

2XXX

Why are dragonflies important?

• Why is it so difficult to study insect mouthpart kinematics and muscles?

A baby Tasmanian devil – cute!

An adult emerald damselfly

microCT helps to generate detailed virtual anatomies

Lestes virens thorax (Small Emerald Damselfly)

Model Setup

- 3 Rigid Segments
- 1 Tendon
- 5 Muscles (554 fibers)
- 2 Spherical joints

Model Setup

Model Setup

Bite Force Measurement

David et al 2016

Attaching Force

AnyMuscleModel – assuming constant strength of the muscle

Pro: Initial force is only input parameter

Con. Ignores cross bridge binding

AnyMuscleModeWBEsclehMeddetement model

Pro: Very detailed/ Pnysiological Con: Lots of input parameters

• AnyMuscleModel2ELin – Bilinear model

Pro: Very detailed/ Physiological Con: Lots of input parameters

• Initial is unknown

When does muscle activation reach 80% level?

Results

Results

What we can do with MDA results

Apart from evolution...

Material optimised robot design

• Typ. load: ~300% of own weight

• Max. load: ~25% of own weight