The webcast will start in a few minutes....

Model validation using the 3-D reachable workspace

AN EXPERIMENTAL + COMPUTATIONAL APPROACH

Outline

- Short introduction to the AnyBody Modeling System.
- Presentation by Miguel
 - Kinematic measurement 3D reachable workspace
 - Force measurement Max directional capability
 - Validation of a musculoskeletal model
- Questions and answers

Miguel Nobre Castro, PhD Student

AnyBody Research Group, Dept of Mechanical and Manufacturing Engg Aalborg University (DK)

Host: Ananth Gopalakrishnan Product Specialist AnyBody Technology

Control Panel

The Control Panel appears on the right side of your screen.

Submit questions and comments via the Questions panel.

Questions will be addressed at the end of the presentation. If your question is not addressed we will do so by email.

Musculoskeletal Simulation

Ergonomic Analysis

547 3,7547 2,547 1,2547

Load Cases for Finite Element Analysis

AnyBody Modeling System

Model validation using the 3-D reachable workspace

AN EXPERIMENTAL + COMPUTATIONAL APPROACH

ON THE VALIDATION OF MUSCULOSKELETAL MODELS USING THE ANATOMICAL 3-D REACHABLE WORKSPACE

MIGUEL NOBRE CASTRO¹, JOHN RASMUSSEN¹, SHAOPING BAI¹, MICHAEL SKIPPER ANDERSEN¹ ¹Dept. Mechanical & Manufacturing Engineering, Aalborg University, Denmark

Background

Neuromuscular Disorders

Musculoskeletal Injuries

Progressing Atrophy

Lack of Autonomy

INDIVIDUAL LEVEL OF IMPAIRMENT

Can musculoskeletal modeling help designing these?

April 26th, 2018. Aalborg, Denmark

Workflow

HEW GROUND

Miguel Nobre Castro (mnc@mp.aau.dk)

Presore UNIVER

April 26th, 2018. Aalborg, Denmark

Subject-specific Modelling

What is the reachable workspace?

The reachable 3-D workspace of a manipulator is described as the region that the origin of the end-effector's frame (a point in the hand for the case of the upper extremity) can reach with at least one orientation, and this volume is typically used as a robot performance metric (Siciliano et al., 2009).

Anatomically speaking, the human RWS can be estimated from a reference point in the hand or wrist (Lenarcic and Umek, 1994).

No Payload

Load Case 1

Load Case 2

Load Case 3

٠

•

•

•

A novel protocol to measure the RWS

Prog R INIVER

No Payload

Load Case 1

Load Case 2

Load Case 3

New protocol to measure the RWS

[Castro et al., J App Erg 2018 – Under Review]

The alpha shape of a point cloud

Maximize the minimum angle over the triangles

Experimental RWS assessment

Experimental RWS assessment

April 26th, 2018. Aalborg, Denmark

[Castro et al., J App Erg. 2018 – Under Review]

Miguel Nobre Castro (mnc@mp.aau.dk)

April 26th, 2018. Aalborg, Denmark

Three force measurements across 12 directions

GH Flexion

GH Abduction

GH Ext Rot

E Flexion

Push

SC Depression

GH Extension

GH Adduction

GH Int Rot

E Extension

Pull

36 measurements

- Right arm model of 'Standing Model'
- 8 degrees-of-freedom (DOF)
- Length-Mass-Fat scaling law
- 3-elements muscle model
- Min/Max polynomial criterion (p=3)
- One step tendon length calibration

Calibrating and adjusting the model...

Miguel Nobre Castro (mnc@mp.aau.dk)


```
AnyMuscleModel3E biceps_brachii_caput_longum = {
  AnyVar JSF = DesignVar(1.0); //MNC
  AnyVar PCSA = 178.000000; // mm^2 VU study
  F0 = JSF*.<u>StrengthScaleHumerus</u>*<u>PCSA</u>*.<u>ConstParam.MusStres</u>s;
  Lt0 = 0.1; // Estimated
  Gammabar = (pi/180)* 2.000000; // Estimated
  Epsilonbar = EpsilonbarTemp;
  K1 = K1Temp;
  K2 = K2Temp;
  Fcfast = FcfastTemp;
  Jt = JtTemp;
  Jpe = JpeTemp;
  PEFactor = PEFactorTemp;
32
                                              FO
                                                        \rightarrow Nominal STR
     Slack Length
             min
                       \leftarrow L^M_{min}
                                         muscle
           tendon
                                         M
                                         max
                               L_{max}^{MT}
```

Adapted from Garner and Pandy (2003)

April 26th, 2018. Aalborg, Denmark

Grouping Muscles by JSF

//Global
AnyVar JSF_Global = DesignVar(1.0);

//Arm

AnyVar JSF_ScaStabAnt = DesignVar(1.0); AnyVar JSF_ScaStabPos = DesignVar(1.0); AnyVar JSF_SCPro = DesignVar(1.0); AnyVar JSF_SCRet = DesignVar(1.0); AnyVar JSF_SCEle = DesignVar(1.0); AnyVar JSF_SCDep = DesignVar(1.0); AnyVar JSF_GHFle = DesignVar(1.0); AnyVar JSF_GHExt = DesignVar(1.0); AnyVar JSF_GHExt = DesignVar(1.0); AnyVar JSF_GHAbd = DesignVar(1.0); AnyVar JSF_GHAdd = DesignVar(1.0); AnyVar JSF_GHExtRot = DesignVar(1.0); AnyVar JSF_GHExtRot = DesignVar(1.0); AnyVar JSF_GHIntRot = DesignVar(1.0); AnyVar JSF_GHIntRot = DesignVar(1.0);

AnyVar JSF_EExt = DesignVar(1.0); AnyVar JSF_EPro = DesignVar(1.0); AnyVar JSF_EPro = DesignVar(1.0);

AnyVar JSF_WStab = DesignVar(1.0);

= 18-D problem!

// Biceps brachii long head #1

AnyVar biceps_brachii_caput_longum_prod = MSF_biceps_brachii_caput_longum * JSF_Global * (JSF_GHFle * JSF_EFle * JSF_ESup);

// Run JSF BasicOptStudy

AnyOperationSequence RunJSF_BasicOptSequence = {
 AnyOperationMacro load = {MacroStr={ "classoperation Main.MuscleStrengthSettings.DefaultMuscleStrengthStudy " + strquote("Load design") + " --file=" + strquote(SUBJECT_PATH + "Calib3E.txt")};}
 AnyOperation& SetJointStrengthFactors = .SetJointStrengthFactors;
 AnyOperationMacro update = {MacroStr={ "classoperation Main " + strquote("Update Values") };};

AnyOperation& InvDyn = ...Study.InverseDynamics;

AnyOperationMacro dump1 = {MacroStr = { "classoperation Main.Study.MaxMuscleActivity"+ strquote("Dump")};}; AnyOperationMacro dump2 = {MacroStr = { "classoperation Main.Study.NodesOfInterest.PalmNode_Thorax.Pos"+ strquote("Dump")};}; AnyOperationMacro dump3 = {MacroStr = { "classoperation Main.Study.NodesOfInterest.ElbowNode_Thorax.Pos"+ strquote("Dump")};};

Miguel Nobre Castro (mnc@mp.aau.dk)

(2x3 postures about the direction of each 6 DOFs) =36 measurements

NOTED THE Second state of the second state of

Quadratic Response Surface

April 26th, 2018. Aalborg, Denmark

3 Design Variables > 10 coefficients > 13 samples $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_4x_1x_2 + a_5x_1x_3 + a_6x_2x_3 + a_7x_1^2 + a_8x_2^2 + a_9x_3^2$ 18 Design Variables > 343 coefficients > 624 samples... ... x36 = 22,464 samples!!! (...or AMS calls)

Miguel Nobre Castro (mnc@mp.aau.dk) Prove outwerst Optimization Step

Miguel Nobre Castro (mnc@mp.aau.dk)

The MMACT for the 36 postures across subjects

 $\min_{\mathbf{x}_{JSF}^{*}} f(\mathbf{x}) = \sum_{i=1}^{36} (MMACT_{i} - 1)^{2}$

The optimized Joint Strength Factors (JSF)

How to simulate the RWS? How to compare them?

Experimental RWS X "Length-Mass-Fat (LMF) only scaled" model RWS X "Joint Strength Factor (JSF) scaled" model RWS

Miguel Nobre Castro (mnc@mp.aau.dk)

April 26th, 2018. Aalborg, Denmark

The RWS for a model only LMF scaled

ROM000

Load case 1

Load Case 2

Load Case 3

Miguel Nobre Castro (mnc@mp.aau.dk)

April 26th, 2018. Aalborg, Denmark

The RWS for a model LMF and JSF scaled

Preso Round

Load case 1

Load Case 3

Load Case 2

How well does the predicted volume match the experimental?

- Models length-mass-fat scaled are generally weak
- The simple one-step calibration method might not be enough
- More experimental data is required to validate this method
- This type of procedures are typically computationally expensive
- Reachable workspace can potentially be a validation tool

ON THE VALIDATION OF MUSCULOSKELETAL MODELS USING THE ANATOMICAL 3-D REACHABLE WORKSPACE

Miguel Nobre Castro (mnc@mp.aau.dk)

April 26th, 2018. Aalborg, Denmark

Wear**R**^Acon 18

The CXD - Compact X-scissors Device

BREAKING BREAKING

https://youtu.be/67FZox9GxMc https://youtu.be/Pw_esFdwGmo

ON THE VALIDATION OF MUSCULOSKELETAL MODELS USING THE ANATOMICAL 3-D REACHABLE WORKSPACE

MIGUEL NOBRE CASTRO¹, JOHN RASMUSSEN¹, SHAOPING BAI¹, MICHAEL SKIPPER ANDERSEN¹ ¹Dept. Mechanical & Manufacturing Engineering, Aalborg University, Denmark

www.anybodytech.com

• Events, dates, publication list, ...

Events:

30 Apr- 4 May: Advanced PhD course on Musculoskeletal modeling.

Aalborg University, Denmark (Fully Booked)

7 May- 9 May: Qualisys European user group meeting.

Gothenberg, Sweden

8 Jul - 12 Jul: World Congress of Biomechanics Booth + live session with Xsens (Outdoor MoCap) Dublin, Ireland

Meet us? Send email to sales@anybodytech.com

Time for questions:

