

The webcast will start in a few minutes....

Loading an aircraft

VALIDATION OF THE LUMBAR SPINE MODEL AND ANALYSIS OF LUMBAR LOADS IN AIRPORT BAGGAGE HANDLERS

Outline

- Introduction by the Host
- Loading an aircraft
 - Validation of the lumbar spine model
 - Analysis of lumbar loads in airport baggage handlers
- Final words from the host
- Questions and answers

Henrik Koblauch, Ph.D. (Presenter)

Ananth Gopalakrishnan (Host)

AnyBody Modeling System

Musculoskeletal analysis

AnyBody Managed Model Repository

Wide range of simulation options

- Motion capture
- Ground reaction force prediction
- Imaging \rightarrow Patient-specific anatomy
- Man-machine simulations

Rasmussen et. al. (2011), ORS Annual Meeting

Load Cases for Finite Element Analysis

Surgical Planning and **Outcome Evaluation**

AnyBody Modelling System

Henrik Koblauch, Ph.D. Assistant Professor at the School of Physiotherapy UCC,

Loading an aircraft

VALIDATION OF THE LUMBAR SPINE MODEL AND ANALYSIS OF LUMBAR LOADS IN AIRPORT BAGGAGE HANDLERS

Faculty of Health and Medical Sciences

Low back load in airport baggage handlers

Henrik Koblauch, Ph.D.

University College Capital, School of Physiotheray Department of Neuroscience and Pharmacology, University of Copenhagen

AnyBody Webinar November 10th 2015

Introduction

Part of the Copenhagen Airport Cohort

- Aim to describe and analyze causes of musculoskeletal injuries in airport baggage handlers in Copenhagen Airport
- Cohort of 3396 present and previous baggage handlers

Real life baggage handlers

9 November 2015 Slide 3

Real life baggage handlers

9 November 2015 Slide 4

Real life baggage handlers

9 November 2015 Dias 5

Background

- High prevalence of musculoskeletal complaints in baggage handlers. (Undeutsch, 1982; Stålhammer, 1986; Bern, 2013)
- The job as a baggage handler is characterized by:
 - Heavy lifting and non neutral working positions are common.
 - Asymmetrical lifting

(Brauer, 2013; Stålhammer, 1986; Riley, 2009; Tapley, 2005)

Background

- Heavy lifting and lifting in awkward positions is known to increase the load on the spine. (Stålhammer, 1986; Gallagher, 2001)
- The increased spinal load is a known riskfactor for back pain. (Coenen et al, 2013 & 2014; Waters et al, 2014)

Purposes

- To develop a generically useful tool to examine specific lumbar compression in a valid manner.
- To investigate the spinal loading in common work tasks for baggage handlers.

Methods

 Wilke et al. published estimates of intra-discal pressures during various dayly activities

(Wilke et al 1999 & 2001)

 A pressure gauge was inserted in the L4/L5 disc and data was recorded different activities

9 November 2015 Dias 30

9 November 2015 Dias 31

Methods

- AnyBody I⁻ dynamics-
- Modificatic repository
- Highly det model) (de
- Compress the L5
- Muscle act
 - 3rd or
 - Min/m

9 November 2015 Dias 33

Methods

Intra-discal pressure estimates were converted to force using:

$$F = PAC_{corr}$$

 Where P is the estimated pressure, A is the area of the disc (1800 mm²), and C_{corr} is a correction constant of 0.77 (Dreischarf et al, 2013)

Min/max criterion

9 November 2015 Dias 35

Position/Estimate	Wilke in vivo (N)	3 rd order polynomial (N)	Difference (N / %)	Min/Max- criterion (N)	Difference (N / %)
Lying supine	139	110	-29 / -21	138	-1 / 0
Sitting relaxed	457	279	-178 / -39	290	-167 / -37
Standing	693	522	-171/ -25	548	-145 / -21
Sitting straight	610	417	-193/ -32	424	-1867 30
Standing flexed (60°)	1525	1520	-5 / 0	1730	205 / 13
Lift close to body	1525	1302	-223 / -15	1553	28 / 2
Max flexed	2218	1661	-558 / -25	2375	157 / 7
Lift stretched arms	2495	2208	-287 / -11	2581	86 / 3
Lift flexed back (60°)	3188	3173	-15 / -1	3350	162 / 5

Discussion

- High agreement between intra-discal pressure and modeled compression force with min/max muscle recruitment.
- Good trend agreement regardless of muscle recruitment criterion. (r = 0.995 resp. 0.993)
- Agreement improves when forces increase

Discussion – strength & limitations

- Intra-discal pressure during dynamic movements model calculated load in one timepoint.
- The positions of the model were not exactly similar to the in vivo estimates.
- Segment properties of the model were based on antropometric fractions rather that data from the subject.
- Comparison with in vivo measurements.

Conclusion

- Model shows high agreement with in vivo intra-discal pressure
- The model responds adequately to changes in positions
- Assumptions in the model can question the validity

AIM

• We wanted to investigate the spinal loading in common work tasks for baggage handlers under dynamic consitions.

Material

- One professional baggage handler (male, 48 years, 1.81 m., 87 kg, 17 years seniority.)
- Stooped and kneeling baggage handling
- 20 kg, 15 kg and 10 kg suitcases were recorded

Methods

- A custom built motion capture system
- Eight synchronized highspeed HD cameras, sampling at 75 Hz
- Two (AMTI OR6-7) force platforms in the stooped task
- Four force platforms in the kneeling task
- Full body marker setup consisting of 38 markers
 + three suitcase markers

Musculoskeletal models

- Inverse dynamics based models in AnyBody Modeling System v. 5.3
- Based on the *GaitFullBody* model in the AnyBody Managed Model Repository (AMMR) v. 1.5.
- Kinematic data was used to drive the model.
- Spine model was included

9 November 2015 Slide 44

UNIVERSITY OF COPENHAGEN

University of Copenhagen

- In both the suite modelec with the
- The righ linked to with a re
- Left han bag with contact

9 November 2015 Slide 45

Data output

- Compression force
- Shear force
- Rotator moment

9 November 2015 Slide 47

9 November 2015 Dias 48

Task	Weight (Kg)	Compression (N) (peak/median/IQR)	Shear (N) (peak/median /IQR)	Rotator moment (Nm) (peak/median/ IQR)
Kneeling	20	6561/3862/1860	200/123/66	69/9/79
Stooped	20	11542/7285/3712	551/337/177	165/94/60
Kneeling	15	7591/3376/1748	201/41/72	66/-2/75
Stooped	15	13410/4279/1886	578/127/84	152/82/74
Kneeling	10	6938/3012/1223	203/126/171	47/-22/66
Stooped	10	16636/7677/1215	345/106/148	173/81/31

Discussion

- Highest compression force in the stooped 10 kg task.
- The compression force exceeded the recommendations suggested by NIOSH (3400 N) in all tasks.
- Above to the average maximum compression tolerance cadaver studies (6180 N). (Jäger et al, 2001)
- Small shear forces. 1000 N for single cycles (<100) and 700 N for continuos work (Gallagher & Marras, 2012)

Discussion - strengths & limitations

- One subject and one trial
- Model allows analysis of 3D asymmetrical lifting
- Generically useful model to investigate lifting
- High level of detail

Perspectives

- The models from the present study can be used on any lifting situation
- Optimization of lifting tasks
- Data can be used to prioritize job rotations
- The use of data in epidemiologic study

Acknowledgement

Thank you

- Erik Simonsen, Mark de Zee, Michael Skipper Andersen
- Danish Work Environment Research Fund
- Family & friends
- AnyBody Technology for giving me the opportunity to present my work.

Thank you for your attention

9 November 2015 Slide 54

Webcasts

- No webcasts planned for December.
- Next webcast will be beginning of February
- Check our YouTube channel for previous webcast
 - Search channels for 'AnyBody Technology'

www.anybodytech.com

• Events, dates, publication list, ...

www.anyscript.org

• Wiki, Forum

Time for questions:

