

Biomechanical outcome after computerassisted Femur First vs. conventional THR

Tim Weber ^{a)b)}, Tobias Renkawitz ^{b)}, Joachim Grifka ^{b)}, Sjoerd Bulstra ^{c)}, Gijsbertus J. Verkerke ^{d)e)}, Sebastian Dendorfer ^{a)}

^{a)} Ostbayerische Technische Hochschule Regensburg, Biomedical Engineering, Labor für Biomechanik
 ^{b)} Orthopädische Klinik für das Universitätsklinikum Regensburg, Asklepios Klinikum Bad Abbach
 ^{c)} University of Groningen, University Medical Center Groningen (UMCG), Department of Orthopaedic Surgery
 ^{d)} University of Groningen, University Medical Center Groningen (UMCG), Center for Rehabilitation
 ^{e)} University of Twente, Department of Biomechanical Engineering

Institutions

Joachim Grifka Tobias Renkawitz

Companies

ANYBODY Musculoskeletal computations

Tim Weber Laboratory for Biomechanics Laboratory for Gait and Motion Analysis

simpleware

Medical image processing

Finite Elemente Analysis

Sjoerd Bulstra Bart Verkerke

1. Introduction

2. V&V – Verification and Validation

3. Study Results and Discussion

4. Outlook

Introduction

- Increasing numbers of patients that are subject to Osteoarthritis (OA)
- OA in the hip is the leading cause for
 - Pain
 - Stiffness
 - Difficulty in moving (limited range of motion)
- 300,000 Total Hip Replacements (THR) in Germany¹

¹⁾ OECD: Health at a Glance 2013: OECD Indicators.

Up to 25% are still failing¹ --- but why?

1) Melvin et al.: Early Failures in Total Hip Arthroplasty – A Changing Paradigm. 2013

Clinical challenges

- Malpositioning leads to
 - Impingement
 - Increased wear rates and
 - Increased risk for dislocation

1) Shon et al.: Impingement in total hip arthroplasty a study of retrieved acetabular components. 2005 2) Patel et al.: The dislocating hip arthroplasty: prevention and treatment. 2007

Femur First

1) Sendtner et al.: [Femur first in hip arthroplasty--the concept of combined anteversion]. 2010.

- Guided surgery to position implant system with respect to patient anatomy
- Imageless, motion-capture (MoCap)

Optimal implant positioning may lead to decreased wear and impingement rates

1) Renkawitz et al.: Development and evaluation of an image-free computer-assisted impingement detection technique for total hip arthroplasty. 2012.

- 60 Patients (28 CAS FF/32 CON)
 - Subgroup of the FemurFirst¹ study
- Pre-op, 6 months post-op, 12 months post-op gait analysis
- Post-op CT-Scan of all patients
- Randomized
- Double blinded
- Ethics approval

¹⁾ Renkawitz et al. Minimally invasive computer-navigated total hip arthroplasty, following the concept of femur first and combined anteversion: design of a blinded randomized controlled trial. 2011

Study hypothesis

Outcome variable	Hypothesis
Hip reaction force - Magnitude - Symmetry	 Magnitude closer to healthy in CAS group Symmetry increased in CAS group
Hip reaction force orientationDistance to rimAt peak loads	 Distance to rim increased in CAS group Distance to rim at peak loads increased in CAS group

Workflow

acquisistion of volunteer

patients/subjects

- anthropometrics - anatomy

gait analysis

- motion capture

(marker trajectories)

ground reaction force

Weber et al.: Measuring functional outcome after total hip replacement with subject-specific hip joint loading. 2012
 Dendorfer et al.: Musculoskeletal modeling for hip replacement outcome analyses and other applications. 2014

input for...

input for...

- Over 150 individual activated muscles
- Highly accurate due to non-linear scaling¹
- Cubic muscle activation scheme

$$G = \sum_{i} \left(\frac{mf_i}{N_i}\right)^3$$

1) Andersen et al.: The effect of including accurate pelvis bony landmarks in a nonlinearly scaled musculoskeletal lower extremity model. 2012

MoCap to Model

P24, CAS FF, operated: left

t0 – pre operativ

t1 – 6 month post operativ

Dynamic time warping

"typical signals"¹
measure of shape similarity

Universität Regensburg

Radiographic coordinate system¹

1) Murray: The definition and measurement of acetabular orientation. 1993.

Verification & Validation

Method verification

Research question	Source of variance	Study	Target parameter
Is the result obtained dependent on the MoCap Analyst?	MoCap Analyst	1 healthy subject (S1), 1 gait analysis, evaluated 10 times by 3 different examiners: A(experienced), B(experienced), C(not-experienced)	Standard error of mean (SEM) of hrf - HRF _{SEM}
How big is the influence of marker-placement on the results obtained	MoCap – marker placement	1 healthy subject (S1), 10 gait analysis, application of marker set in alternating manner by 2 analysts: A(experienced), B (experienced)	HRF _{SEM}
Is the method robust enough to produce repeatable results?	Measurement chain	3 healthy subjects (S1,S2,S3), 10 gait analysis, evaluation by 1 experienced analyst (A)	HRF _{SEM}

SEM : standard error of the mean

$$SEM(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

 σ : standarddeviation n: sample size

Verification results

SEM of reaction force validation of verification models 0.25 7 × right × left × 6 × × 0.2 SEM in bodyweight hrf in x*bodyweight X × × × X ×).15 × × × × × 0.1 × × × 2 0.05 Analyst Bust Cont A cont Bubject 1 Subject 3 Analy Analyst Placement Subject 1 Subject 3 Marker Placement Subject 1 Subject 3 Analyst A verification study experiments ----- Stansfield et al.(mean) Stansfield et al.(+/-1.96SD)

• Hrf accuracy: $2 \cdot max_{SEM} \sim 0.5BW$

1) Stansfield and Nicol: Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. 2002.

Model validation

¹⁾ Bergmann et al.: Hip contact forces and gait patterns from routine activities. 2001 - <u>http://orthoload.com/</u>

- STUDY RESULTS -

- Computed by means of dynamic time warping¹
- Walking speed normalized to body height²
- 1) Bender and Bergmann: Determination of typical patterns from strongly varying signals. 2012.
- 2) Hof: Scaling gait data to body size. 1996.

Asymmetry of hrf

Pathlength: phase shift symmetry Cumulated distance: magnitude symmetry

Universität Regensburg

b) operated side vs. normative data

 Computed by means of dynamic time warping¹

1) Bender and Bergmann: Determination of typical patterns from strongly varying signals. 2012.

REGENSBURG BIOMEDICAL

ENGINEERING

TECHNISCHULE HOCHSCHULE REGENSBURG UR

Weber et al.: Measuring functional outcome after total hip replacement with subject-specific hip joint loading. 2012.

Weber et al.: Measuring functional outcome after total hip replacement with subject-specific hip joint loading. 2012.

Discussion I

- Hip reaction forces:
 - CON hrf are closer to a healthy normal at 6 month postop
 - CAS FF hrf are closer to a healthy normal at 12 month postop
- Asymmetries:
 - decrease more in the CAS FF group, but insignificantly
 - CAS FF group closer to healthy normal in terms of phase-shift
- Orientation:
 - At t1 hrf Orientation of the CAS FF closer to optimal (90° $p\!<\!0.05)$
 - At t2 no significant differences between the groups

Discussion II

- t1 (6 month):
 - CON hrf are closer to healthy normal
 - Hrf orientation is closer to optimum in the CAS FF group

<u>Trend for lower propensity for impingement and</u> <u>dislocation early after surgery for CAS FF</u>

- t2 (12 month) :
 - Increased phase-shift asymmetry
 - CAS FF are closer (practically the same) to healthy optimum

Possible long-term benefit due to restored walking ability for CAS FF patients

Strengths & limitations

- Comprehensive data set (32 vs. 28 patients)
 - Double blinded, randomized, prospective
- Validated and detailed model (AnyBody AnyGait Model)
- Symmetry captures not only point of times, it is rather a measure of shape similarity
- Only post6, no earlier results
- Only walking as motion
 - More critically motions may be used for bigger effects (ethics)
- Greater sample size would increase statistic validity

- Regensburg Center of Biomedical Engineering –
 <u>rcbe.de</u>
- Tim Weber (LBM,RCBE,UKR)
 - tim.weber (at) oth-regensburg.de
 - <u>https://www.linkedin.com/pub/tim-weber/88/222/1a1</u>

Thank you

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

Universität Regensburg

Literature (in order of appearance):

- ✤ OECD: Health at a Glance 2013: OECD Indicators.
- Melvin et al.: Early Failures in Total Hip Arthroplasty A Changing Paradigm.
 2013
- Shon et al.: Impingement in total hip arthroplasty a study of retrieved acetabular components. 2005
- Patel et al.: The dislocating hip arthroplasty: prevention and treatment. 2007
- Sendtner et al.: [Femur first in hip arthroplasty--the concept of combined anteversion]. 2010.
- Renkawitz et al.: Development and evaluation of an image-free computer-assisted impingement detection technique for total hip arthroplasty. 2012.
- Renkawitz et al.: Minimally invasive computer-navigated total hip arthroplasty, following the concept of femur first and combined anteversion: design of a blinded randomized controlled trial. 2011
- Weber et al.: Measuring functional outcome after total hip replacement with subject-specific hip joint loading. 2012
- Dendorfer et al.: Musculoskeletal modeling for hip replacement outcome analyses and other applications. 2014
- Andersen et al.: The effect of including accurate pelvis bony landmarks in a nonlinearly scaled musculoskeletal lower extremity model. 2012
- Bender and Bergmann: Determination of typical patterns from strongly varying signals. 2012
- Stansfield and Nicol: Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. 2002.
- Bergmann et al.: Hip contact forces and gait patterns from routine activities. 2001
 <u>http://orthoload.com/</u>
- Hof: Scaling gait data to body size. 1996.
- Weber et al.: Influence of minimally invasive total hip replacement on hip reaction forces and their orientations. 2014.

