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Locomotion through the environment is important because movement
provides access to key resources, including food, shelter and mates. Central
to many locomotion-focused questions is the need to understand internal
forces, particularly muscle forces and joint reactions. Musculoskeletal mod-
elling, which typically harnesses the power of inverse dynamics, unites
experimental data that are collected on living subjects with virtual models
of their morphology. Then'lpulsreqmnedhrproducmggucdmusmlmhd&
tal models include body g y, muscle p ‘maotion and
ground reaction forces. This methodological approach is critically informed
by both biological anthropology, with its focus on variation in human form
and function, and mechanical engineering, with a focus on the application of
MNewtonian mechanics to current problems. Here, we demonstrate the appli-
cation of a musculoskeletal modelling approach to human walking using the
data of a single male subject. Furthermore, we discuss the decisions required
to build the model, including how to customize the musculoskeletal model,
and suggest cautions that both biological anthropologists and engineers who
are interested in this topic should consider.

1. Introduction

A principal research focus within biological anthropology is interpreting skeletal
variation within the context of behavioural diversity, including variation in diet,
disease processes and activity patterns among living and extinct primates,
including humans and hominins [1-4]. Locomotor behaviour and musculo-
skeletal morphology have been a central focus of this area of inquiry because
locomotion provides primates with access to key evolutionary resources includ-
ing food, shelter and mates. Furthermore, bipedalism is considered a defining
character of the hominin lineage, cementing its importance within the field
[5-7]. The challenge of elucdating form-behaviour relationships are the
complexities of the intervening and underlying functions (eg. joint range of
motion) and biomechanics (e.g. joint reaction forces).

Early anthropological research connecting form and function was both
typological and qualitative in nature; however, anthropologists have increas-
ingly adopted mechanical engineering approaches to answer questions about
primate locomotion generally, and hominin locomotion in particular (see [4]
for a historical review). Within anthropology, two major subfields of mechanics
have been applied to locomotor systems: Newtonian mechanics and solid con-
tinuum mechanics. Newtonian mechanics is concerned with the description of
the motion of solid bodies under the influence of a system of forces, while solid
continuum mechanics quantifies the behaviour le.g. deformation) of solid
materials when subjected to forces [8,9]. Lovejoy and colleagues [10-13] were
early adopters within anthropology of both Newtonian mechanics and solid
continuum mechanics [4]. Newtonian mechanics is routinely used by anthro-
polagists to investigate a variety of questions (eg. [14-19]). Beam theory, an
application of solid continuum mechanics, has been used to estimate the struc-
tural capacity of long bones and is regularly exploited by anthropologists (see
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Muscle forces and the demands of human walking
Adam D. Sylvester'-*, Steven G. Lautzenheiser®> and Patricia Ann Kramer?

ABSTRACT

Reconstructing the locomotor behavior of extinct animals depends
on elucidating the principles that link behavior, function, and
morphology, which can only be done using extant animals. Within
the human lineage. the evolution of bipedalism represents a critical
transition, and evaluating fossil hominins depends on understanding
the relationship between lower limb forces and skeletal morphology
in living humans. As a step toward that goal, here we use a
musculoskeletal model to estimate forces in the lower limb muscles
of ten individuals during walking. The purpose is to quantify the
consistency, timing, and magnitude of these muscle forces during the
stance phase of walking. We find that muscles which act to support or
propel the body during walking demonstrate the greatest force
magnitudes as well as the highest consistency in the shape of force
curves among individuals. Muscles that generate moments in the
same direction as, or orthogonal to. the ground reaction force show
lower forces of greater variability. These data can be used to define
the envelope of load cases that need to be examined in order to
understand human lower limb skeletal load bearing.

KEY WORDS: Musculoskeletal model, Biomechanics, Lower limb

INTRODUCTION

Reconstructing the locomotor behavior of extinct taxa is the attempt
to reverse engineer an organism’s behavior from a selection
of its morphology (Sellers et al., 2005; Nyakatura et al, 2019).
Paleontologists are typically limited to tissues that fossilize well
(i.e. skeletal elements, teeth), and the endeavor is made more
challenging by the fact that skeletons and skeletal elements are
rarely complete (Sellers et al., 2005; Nyakatura et al., 2019). The
mandate of this line of inquiry is to determine the ways in which the
skeletal system reflects the demands of locomotion.

The mammalian locomotor skeleton can be viewed as a series of
rigid levers that are connected at articulations and actuated by
muscles. Skeletal elements allow muscles forces to be transmitted
and applied to the environment/substrate, which produces animal
motion. Skeletal elements must be able to withstand the structural
demands of forces applied by muscles, adjacent skeletal elements,
and the substrate (Martin et al., 2015). Thus at a basic level, the
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skeletal system reflects the forces associated with locomotion. Such
form-function relationships are informed by studying extant
organisms, and then extinct taxa can be understood by projecting
principles into the past. That is, reconstructing past behaviors
requires evaluating the skeletal performance of extinet animals,
which in turn necessitates discerning the principles that link
behavior (e.g. walking), function (e.g. forces and load bearing), and
marphology (e.g. femoral shape) using extant animals.

As bipedalism is one of the foundational transitions in human
evolution, understanding the adaptive orgin of hominin bipedalism
remains a critical task and one that ultimately depends on elucidating
the details of earlier forms. Based on fossilized skeletal material,
various researchers have argued that most, if not all, extinct hominins
practiced forms of bipedalism that were kinematically, kinetically,
and/or metabolically distinet from modemn human bipedalism (e.g.
Stem and Susman, 1983; Kramer, 1999; Wood and Collard, 1999;
Simpson etal., 2008; Lovejoy et al., 2009; Been etal., 2012; Ruffand
Higgins, 2013; DeSilva et al., 2013). Much of this research has
focused on the femur and pelvis because of the critical role these
structures play in weight-bearing and hominin locomotion, and these
bones contain features that are universally agreed to indicate
bipedalism, while also potentially revealing the uniqueness of
earlier forms (e.g. femoral bicondylar angle, Johanson and Taieb,
1976; femoral neck cortical distribution, Ruff and Higgins, 2013;
short and wide pelvis. Lovejoy et al., 2009).

Leveraging a model adopted from human orthopaedic
biomechanics, Lovejoy and colleagues (Heiple and Lovejoy, 1971;
Lovejoy et al., 1973) were the first to estimate forces exerted on the
proximal femur of early hominins during walking (Ruff, 2018). This
highly influential work modelled the midstance of walking based on
standing on one foot as established by Frankel and Burstein (1970)
and also developed by McLeish and Charnley (1970). This model
has been used repeatedly to evaluate the structural capacity of
early hominin lower limb skeletal elements (e.g. Berge, 1994; Ruff,
1998). For example, the human femoral neck is unique relative to
other apes in its superoinferior asymmetric distribution of cortical
bone (Lovejoy, 1988; Lovejoy et al., 2002). From these principles,
Ruff and Higgins {2013) argue the South African hominins

Australopithecus africanus and Paranthropus robustus would have

utilized a bipedal gait that required lateral sway of the trunk.
Without diminishing the importance and influence of this body of
work, the limitations of this approach, although state-of-the-art at the
time, should be recognized. As with all models, the estimates of
forces were generated under a specific set of simplifications
(assumptions) to make the problem tractable. Implicit in the single
limb standing model is that midstance is sufficiently representative of
the entire stance phase of the gait cycle to describe the structural
demands impose by lower limb biomechanics. During standing,
however, the ground reaction force (GRF) is equal to body weight,
while at walking midstance, the GRF is closer to 70% of body weight
because the center of mass (CoM) of the body has been accelerated
upward (Richards, 2008). Second, during single limb standing, the
total body CoM must be directly above the support foot in order to
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Standard Approach
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Connecting Form and Function in Locomotor Research
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Musculoskeletal modeling

» Extends inverse dynamic models
* Includes models of individual muscles
* Solves muscle redundancy problem
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Muscle redundancy problem
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Australopithecine Bipedalism
* Modern bipedalism

* Less efficient

* Hip / knee flexion

« Lateral trunk sway
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Examples from Paleoanthropology
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Contributions from evolutionary biologists

o Skeletal Variation
 Muscle Variation
* Models of other animals




Suggestions for starting MSM

 More accessible than ever
 Models are abstractions
* There are many choices




Acknowledgements

Patricia A. Kramer, PhD Department of Anthropology
University of Washington
Steven G. Lautzenheiser Department of Anthropology

University of Tennessee



References

Sylvester AD, Lautzenheiser SG, Kramer PA. 2021. A review of musculoskeletal modelling
of human locomotion. Interface Focus 11: 20200060. doi.org/10.1098/rsfs.2020.0060

Sylvester AD, Lautzenheiser SG, Kramer PA. 2021. Muscle forces and the demands of
human walking. Biology Open 10, bio058595. doi:10.1242/bi0.058595



ANYBoDY
Flnd us: n in ! f TECHNOLOGY

m anybodytech.com: Frontpage X +

www.anybodytech.com

& C {} @& htips//www.anybodytech.com
* Events, Dates, Publication list,

''''''''''

www.anyscript.org

SHORTEN TIME TO MARKET
“1,: . . AnyBody simulations help you design products that
¢ Wlkl, Blog, RepOSItorleS, Forum are optimized for human use

Events

e Oct 26 - Future of Workwear: Exoskeletons
& 3D Print

> Simulation based Conceptual Exoskeleton Qrthiopedics Ao

Design by Professor of Biomechanics John m , N
e

Rasmussen from Aalborg University
Assistive Devices Aerospace

ZX Meet us? Send email to sales@anybodytech.com

Ergonomics

3.1 Want to present? Send email to ki@anybodytech.com



mailto:sales@anybodytech.com
mailto:ki@anybodytech.com
https://www.youtube.com/user/anybodytech
https://www.linkedin.com/company/227111
https://twitter.com/TechAnyBody
https://www.facebook.com/AnyBodyTech/

ANYBoDY

TECHNOLOGY

Thank you for your attention
- Time for questions

OCT 12, 2021



