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Shoulder model including humeral head translation




SPHERE-ON-SPHERE MODEL: SHOULDER MODEL INCLUDING HUMERAL

HEAD TRANSLATION

Musculoskeletal modeling of the shoulder to understand the mechanisms of
injuries influenced by scapular and humeral geometry.
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Shoulder anatomy: glenohumeral joint
)

Glenoid of the scapula

Humerus =—

VERY INSTABLE !

Humeral Head Translations: in
vivo up to 12,4mm [1]

Anterior view

[1] Dal Maso et al. (2014) 2



Shoulder anatomy: glenohumeral muscles

deltoids —

supraspinatus

subscapularis

Anterior view

infraspinatus

teres minor

posterior view

Anterior view




Context | Link between pathology and morphology
Qs

Etiology of the shoulder pathologies : impact of scapula morphology?
New parameter : Critical Shoulder Angle [1]

Rotator Cuff
Tear

— ——
| /24 P »
o EROSION F
3 / l OF CARTILAGE r
N .
small CSA (<28°): normal CSA (33°): large CSA (>38°):
osteoarthrosis healthy joint rotator cuff tears

- Biomechanical study with musculoskeletal models

[1] Moor et al. (2013) 4
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Context | Modeling challenges Q

acements
m [2]

Supraspinatus

Infraspinatus

ﬁ

Difficult to assess the
effect of bone morphology
on shoulder biomechanics

Teres Minor ('& /
3

Ball-and-socket

Complex stabilization (3 DoF)

mechanisms
(passive + active) [1]

Non physiological
activation of the cuff
muscles

We therefore need a model representing the displacements of the humeral head!

[1] Veeger and Helm (2007) 5
[2] Dal Maso et al. (2014)



Main objectif
[

Objectif: To develop a model allowing for humeral head
tfranslation to study the relationship between shoulder
bones morphology and pathomechanismes.

“Does the morphology of the bones influence the tendency
to develop specific shoulder pathology ?”

() Lo
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Litterature review | Muskuloskeletal model @

Musculoskeletal model
Inputs uscu Outputs

Bones geometry , ,
Joint reaction force

Muscles geometry M lar f
uscular forces

Kinematic
Humeral head translation

External forces

https://www.anybodytech.com/
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Litterature review | Shoulder model with humeral head translations (’)
o

P!

Sphere-on-sphere representation [1]:
« Geometrical constraint (D %
« Kinematic model only u ICg = Cull = (Rg — Rn)

FDK algorithms solution:
* Arthroplasty [2]

* Healthy [3]

« Arthroplasty + RCT [4]

« RCT [9]

BUT additional springs needed @ Font AT AP /

- GH stability is not assured by the cuff muscles Sins (2014) Menze (2025)

[1] El Habachi et al. (2014) [3] Aurbach et al. (2020) [5] Menze et al. (2025) 8

[2] Sins et al. (2014) [4] Lee et al. (2023)
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1rst specific objectif &13
{

Objectif: developing a 5 Degrees-of-Freedoom (DOF) shoulder model with
physiological activation of the cuff muscles.

Research question: "How does Critical Shoulder Angles (CSAs) variations affect

the biomechanics of the joint in a musculoskeletal shoulder model with humeral
head displacement?”

Hypothesis: By releasing DOF, cuff muscles activation will increase to stabilize

the joint. Large CSA will have higher instability and therefore higher activation from
the cuff muscles.




Method ' Shoulder model
o

The Anybody Shoulder Arm model:
* 118 fiber muscles (Hill) [1]
—>individuals wrapping objects
« Parameters from the Dutch Shoulder Group [2]
« Scapulohumeral rhythms [3]
—>coupling scapula to humeral motion

Additionals modifications:
« Additional supraspinatus wrapping object (torus)
« Corrected subscapularis insertion position

[1] Zajac. (1989) [3] de Groot et al. (2001) 10
[2] Helm et al. (1992)



Method | Sphere-on-Sphere FDK model

Rh =23.6 mm,

humerus

Based on Anybody 8.0,4 (AMMR 3.0.4) [2]
Available on Github: 10.5281/zenodo.17279962

Rg =31.6 mm [1]

n
min B+ wz .2 Cost function 1a
B.aiTGH , '
i=1
s.t. p = aq; B-defining constraint (min/max load sharing) 1b
0<aq; =<1 Physiological activations bounds 1c
R (0, Tsy) fm(a;) = ©  Inverse dynamics constraint 1d
||Cg — Ch|| = (Rg — Rh) Glenohumeral SoS constraint [3] 1e
frok (Tew,a;) < 1IN Glenohumeral FDK [4] 1f

»w=1: weight to ponder quadratic auxiliary term.

*n: number of muscles

-Cg, C, and Rg, R, the center and radii of the glenoid and humeral head,
respectively.

*R: moment arm matrix (function of abduction angle 6 and humeral head
translation (T ;) resulting from the FDK optimization problem)

o fpi: FDK residual forces

[1] Yamani et al. (2022) [3] El Habashi et al. (2015)
[2] Lund et al (2023) [4] Andersen et al. (2017)

11




Method | Acromion length variations

Rg = 31.6 mm [1] Simulation:
130° abduction in

scapular plane

CSA variation by alteration of the position of the lateral deltoid muscle insertions

Short acromion : CSA 28° Normal acromion: CSA 33° Large acromion: CSA 38°

©

Outputs:
*Humeral head displacements

*Muscle forces

=Resultant forces (instability ratio)

[1] Yamani et al. (2022) 12
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Results | Humeral head displacment sensitivity to acromion length @‘

Humeral head displacement [mm]

H . (o] . . o
Large acromion: CSA 38 Short acromion : CSA 28
10 1 V
B -
. |
4_
2 -
_!—I-
0l |®
_2 4
Ell 2I0 4|0 ﬁIO BIO 1[I]0 12I0 1£IIO
Abduction angle [°]
—— (CSA_28 ® Dal Maso P2 » Massimini et al, 2012
-- CSA_33 ¥ Dal Maso P3 Matsuki et al, 2012
—— (CSA_38 4 Giphartetal, 2013 A Nishinaka et al, 2008
+ Dal Maso P1 4 Graichen et al, 2000 = Yamaguchi et al, 2000

13



Results | Muscles forces sensitivity to acromion length

o
Deltoideus anterior / Deltoideus lateral \a
=
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25 50 75 100 125

Abduction angle [°]

60 1

40 1

20 1

Deltoideus posterior /

25 50 75 100 125

25 50 75 100 125

Abduction angle [°]

(@) o

Stabilization :

Anterior and posterior deltoid,
infraspinatus and
subscapularis [1,2]

Supraspinatus: abductor in
the first degrees of elevation

[4]

[1] Sharkey et al. (1995)
[2] Halder et al. (2000)

[3] Hawkes et al. (2019)
[4] Reed et al. (2013)

14



Results

IR sensitivity to acromion length

0.8 1

0.6 1

0.4 1

Instability ratio

0.2 1

0.0 1

60 80
Abduction angle [°]

100

120

IR =

\/Fshmrip — Fshrfrcr?g -

(@) o

DLT force / SSP force=1/1

0 20 40 60 80

thoracohumeral abduction [°]

- CSA 33 (normal)
— CSA 38 (rotator cuff tear)

with volumetric SSP

40 60 80 100 120

thoracohumeral abduction [°]

Feompression
60 DLT force / SSP force=2/1
L
¢ 40
2
:E
£ 20:
£
M % 20 40 60 80
instability ratio= JRF shear component/ JRF compressive component
- no volumetric SSP
2 80
E 80
2z« ;
CSA_28 s :
= 2 2
CS5A 33 =
- % 4 60 8 100 120 %
CSA 38 [2]

w— RCT CSA

= normal CSA

[1] Gerber et al. (2014)

[2] Viehofer et al. (2016)

15
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Discussion | Model sensitivity to acromion length

®
10 - 60° abduction 60 - 130° abduction
RISK: .
=)  (Osteoarthrosis [3
CSA 28° Over compression forces [3, 4] &
 [R increases
« Lateral deltoid forces « Lateral deltoid forces decrease
decrease  Anterior and posterior deltoid,
. Supraspinatus forces infraspinatus and SUbscaPUIaris
decrease forces increase
* Superior humeral head
displacement increases
CSA 38 RISK: RISK:
Impingement syndrome [1,2] Overload the rotator cuff muscles [4,5, 6] ) =™ Rotator cuff tear [3]
Joint dislocation [4]
[1] Michener et al. (2003) [3] Moor et al. (2013) [5] Viehofer et al. (2016) 16

[2] Ludewig and Cook (2002) [4] Gerber et al. (2014) [6] Hawkes et al. (2019)



Conclusion

(o) uio

Model sensitivity to acromion length

The SoS-FDK model offers a mechanical explanation of
the correlations between shoulder pathologies and one
clinical parameter on the scapula.

Journal of Biomechanics 190 (2025) 112885

Contents lists available at ScienceDirect

Journal of Biomechanics

journal homepage: www elsevier.com/locate/jbiomech

Effect of congruence variations on a musculoskeletal model considering

Chack for
upsiatas

humeral head displacements

Margaux Peixoto™ @, Dan Soyeux ®, Patrice Tétreault °, Micka&l Begon °, Nicola Hagemeister

* Laboratoire d’Innovation Ouverte, Ecole de technologie Supérieure, Montréal, Canada
® Centre Hospitalier de I'Université de ¢ éal, Canada
© Faculty of Medicine, University of Montreal, Montréal, Canada

ARTIGCLE INFO

ABSTRAGT

Keywords:

Musculoskeletal shoulder model
Humeral head displacement
Rotator cuff muscles
Force-dependent kinematics
Congruency

The shoulder’s large range of motion is due to the low congruency of the glenohumeral joint, whose stability
relies mainly on rotator cuff muscle activity. The effect of joint congruence on shoulder biomechanics remains
unclear. We used a sphere-on-sphere glenohumeral model combined with a Force-Dependent Kinematics algo-

https.//qithub.com/AnyBody/sphere-on-sphere shoulder model

rithm to simulate muscle and joint forces while considering humeral head displacements. Our innovative sim-
ulations showed an increase in humeral head displacements and rotator cuff muscle forces when joint conformity
decreased. Our model aligns with in vivo observations and highlights the importance of joint congruence on
stability. It provides insights to improve our understanding of shoulder biomechanics.

17
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Context ' Rotator cuff tears
o

Muscles compensation (in vivo studies, patients with RCTs):

« Lateral deltoid [2] » Infraspinatus and supraspinatus
« Posterior deltoid [2,3] activate despite being torn [2,4]
« Biceps brachii [2,3]

« Teres major [2]

« Latissimus dorsi [2]

« Trapezius [4]

« Subscapularis [2]

a) = feea Ctm—
Supraspinatus b) i i / i
Infraspinatus £
Only few, heterogenies studies: Superior

subscapularis Type A Type B Type C
Inferior
Teres minor
.y . . subscapularis s ==
- Collin’s classification [1] Q @
Type D Type E
Collin (2014)

[1] Collin et al. (2014) [3] Veen et al (2021) 18

[2] Hawkes et al (2012) [4] Kelly et al (2005)
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2rst research question
[

Objectif: assess the relevant of the SoS-FDK model to study RCTs effect
on the glenohumeral joint biomechanics.

Research question: “Does the RCT type influence the stability of the
glenohumeral joint ?”

Hypothesis: muscles with similar lines of action will compensate [1].
Massive RCT (3 muscles torn), will be less stable.

[1] Ackland et al. (2009) 19



Methods | RCTs simulation (Collin’s classification)

muscle torn: max forces = ON

Simulation:

Abduction in the scapula plan up to 120 degrees

[1] Collin et al. (2014)

20



Results | RCTs effect on humeral head translations

Inferior, Positive = Superior

IS Translation (mm})

Negative

a)
Supraspinatus
Infraspinatus
Superior

sul:;scapularls Type A Type B Type C
Teres minor subsncf::t‘:l:ﬂs — —
4 4
Type D Type E
Collin (2014)

Type A: the closest to intact cuff's kinematic
Other types: hight superior translation (>6mm for B, C, E)

6 ]
4 ]
POSTERIOR. ANTERIOR-SUPERIOR
—9
2 ]
. AP .1 9 mm
i 15=0.3 mm
0 4
POSTERIOR-INFig N REINF
— 2 1
-3 -2 -1 0 1

AP Translation (mm)
Negative = Posterior, Positive = Anterior

21
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Results | RCTs effect on instability ratio

®
1.2 — ref
— type A 2 Supraspinatus -
— type B Infraspinatus Q Q Q
1.0 - typec Superior
—— type D ’“'::::‘::"’ Type A Type B Type C
type E Teres minor subscapularis /
ey
o
'..r_E Type D Type E
Eo ’ Collin (2014)
= 0.
£ In— \/F.ﬁ‘flﬁt’u‘ip + Fshrfn,r%s »
0.4 N Feompression
 Type Aand D: IR <1
o2  Type B, C and E: IR >1, risk of dislocation

20 40 60 80 100 120
Abduction angle (degrees)

[1] Gerber et al. (2014) 22



Results | RCTs effect on muscle forces
@

Muscle Forces - Angles 30° to 60°

Tear type
Deltoideus anterior Bl ref

B typeA

Deltoideus lateral [ typeB

E typeC

_ _ Bl typeD

Deltoideus posterior I typeE
Infraspinatus
Supraspinatus
Upper subscapularis
Lower subscapularis
Teres minor

0 20 40 60 80 100 120 140 160 180

Force (N)
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Discussion-conclusion | RCTs effect on shoulder biomechanics '

» Deltoids activity increase for every tears

« Cuff compensation is tear specific

* Type A is the more stable and have the more efficient
compensatory responds

« Largertear (B, C and E) don'’t achieve stability

While deltoid muscles consistently increase force to preserve
abduction, compensatory recruitments of remaining cuff and
scapular muscles are tear-specific according to Collin et al. (2014)’s
classification.

24
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Conclusion | Model sensitivity to RCT types
{

Understanding the influence and impact of shoulder
muscles during a rotator cuff tear according to Collin’s
classification: a musculoskeletal model study

Currently under review (Journal of Biomechanics)

Pre print available:
https://papers.ssrn.com/sol3/papers.cfim?abstract id=5927062

https.//qithub.com/AnyBody/sphere-on-sphere shoulder model

25
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Perspectives @ Ho

—

Assess the effect of the scapula and humerus morphology on the shoulder stability
in case of RCT.

scapula (Critical Shoulder Angle) [1] + humerus (Greater Tuberosity Angle) [2]

Model personalization: 6 patients

[1] Moor et al. (2013) 26
[2] Cunningham et al. (2018)



Limits

Validation [1] -
Soft tissues representation [2]

@ mobility

'V:: *\’/\

dressing eating

[1] Dal Maso et al. (2014) 27
[2] Menze et al. (2025)
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